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I. Introduction

B
iometric recognition systems are increasingly being deployed as a 
more “natural” means for the recognition of people. Instead of remem-
bering passwords and PINs (which can be stolen or forgotten) or writ-

ten signatures (which can be forged), biometric cues such as fingerprints, 
voice and face are specific to an individual (and hence cannot easily be stolen 
or forged) and characterizes that individual (and hence cannot be forgot-
ten) [1]. The simplest to acquire, most used and pervasive in society, and 
least obtrusive biometric measure is that of human speech. Thus we refer 
to speaker recognition systems as those technologies which utilize human 
speech to recognize, identify or verify an individual [2]. Some of the key, 
early papers providing an overview of speaker recognition systems and the 
various paradigms popular at the time can be found in [3]–[5], for a more 
modern treatment [2], [6]–[8]. 

A. Speaker Identifi cation and Verifi cation Systems
Human society functions by communication between individuals. Lan-
guage in both its written and spoken form underpin all aspects of human 
interactions. The spoken language is the most fundamental as this is how 
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 individuals communicate with one another using only 
the human vocal apparatus. Consequently the acoustic 
signal of human speech characterizes not only what is 
being said but also embodies individual characteristics 
of the speaker, in particular individual pitch and vocal 
tract resonances as well as speaking styles and dura-
tions. Since spoken language is one of the easiest mea-
sures to acquire (all you need is a microphone), is used 
in a variety of transaction applications (e.g. telephone 
banking), and has the potential for security by surveil-
lance (using eavesdropping technology) it comes as no 
surprise that speaker recognition is one of the key re-
search areas in signal processing and pattern recogni-
tion. In security applications where a person has to be 
recognized there are two distinct modes of operation: 
identification and verification. 

In speaker identification (see Fig. 1) human speech 
from an individual is used to identify who that indi-
vidual is. There are two distinct operational phases. In 
training (also called enrolment) the speech from each 
known, verified speaker, for all speakers that need to 
identified, is acquired to build (train) the model for that 
speaker. Usually this is carried out off-line as part of the 
system configuration and before the system is deployed. 
In testing the true operation of the system is carried out 
where the speech from an unknown utterance is com-
pared against each of the trained speaker models. In 
closed-set identification the unknown individual belongs 
to a pre-existing pool or database of speakers (speaker 

models) and the problem then becomes that of choos-
ing which speaker from the pool the unknown speech is 
derived from. The main performance measure of such 
systems is the identification rate (percentage of correct 
identification averaged across all speakers in the pool). 
Closed-set identification is typical in departmental or-
ganizations where the group members are known, their 
speaker profiles can be acquired and stored in a data-
base, and for which identification is internal to the de-
partment (i.e. there are no “outside” users). In open-set 
identification the unknown individual can come from the 
general population. However as identification is always 
carried out against a finite, known pool of individuals 
it is not possible to identify arbitrary people. Thus the 
first task of an open-set identification system is to de-
tect whether the speaker belongs to the pool or data-
base of known speakers, if not, that speaker is rejected, 
otherwise, closed-set identification is carried out. It is 
important in these systems to detect whether a speaker 
belongs to the pool, otherwise a random individual from 
the pool will always be identified. 

In speaker verification (see Fig. 2) human speech 
from an individual is used to verify the claimed identity 
of that individual. As with speaker identification the ini-
tial configuration of the system is carried out during the 
training or enrolment when each speaker to be verified 
by the system has to provide samples of speech which 
are then used to train the model for that speaker. In test-
ing the verification takes place when the  individual has 

Since spoken language is one of the easiest measures to acquire (all you need is a 
microphone), it comes as no surprise that speaker recognition is one of the 

key research areas in signal processing and pattern recognition.
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Figure 1. Block Diagram of a Speaker Identification System.
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to make a claim as to who he/she is, and the system 
then proceeds to verify whether that claim is true or 
false. With speaker verification the speech of the un-
known person is compared against both the claimed 
identity and against all other speakers (the imposter or 
background model(s)). The ratio of the two measures 
is then taken and compared to a threshold, if above the 
threshold the claim is accepted as true, if below, the 
claim is rejected as false. In verification systems two 
key performance measures are popular, the false rejec-
tion rate (FRR), the number of times the true speaker is 
incorrectly rejected, and false acceptance rate (FAR), the 
number of times an imposter speaker is incorrectly ac-
cepted. By varying the decision threshold the FAR and 
FRR will change in opposing directions. For example 
raising the threshold will lower FAR but increase the 
FRR as true claims will start to be rejected since the 
“bar” is raised, conversely if the threshold is lowered 
the FRR is reduced but FAR will increase since not only 
are all true claims now accepted but more false ones 
will as well. The typical operating point for the selection 
of the threshold is when FAR = FRR, termed the equal 
error rate (EER) condition. 

Most forms of security based transactions (e.g. tele-
phone banking) require an individual to be verified rath-
er than identified (i.e. a claim is made as to who the in-
dividual is supposed to be, and this has to be verified). 
However applications of speaker recognition involving 

surveillance, monitoring and automated ID tagging will 
usually require identification rather than verification. In 
closed-set speaker identification an unknown utterance 
has to be compared against all speaker models in the 
pool and as the number of speakers in the pool increas-
es performance is degraded (both in terms of accuracy 
and computational burden). However since in speaker 
verification the unknown utterance is only compared 
against the one claimed model and the other imposter 
model, the verification is faster and does not degrade 
with increasing number of speakers in the pool. Further-
more speaker verification is able to reject speech from 
arbitrary speakers (i.e. the open-set case) which is not 
true for speaker identification. Not surprisingly the ma-
jority of research in speaker recognition concentrates 
on speaker verification, given the practical importance 
of this to, especially, secure call telephony applications. 
The interested reader is referred to [2],[6],[7],[9],[10] 
for a review of the methods and technologies specifi-
cally directed at speaker verification. 

Although human speech is used to identify or veri-
fy an individual it should be remembered that human 
speech is primarily used to convey meaning by words. 
Thus it is possible to strengthen speaker recognition by 
also performing speech recognition (what is being said). 
By restricting the speech to specific words or phrases 
(typically passwords or PINs, or even one’s own name) 
text-dependent speaker recognition is possible. This 

Figure 2. Block diagram of a speaker verification system.
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individual to be verified rather than identified (i.e. a claim is made as to who 
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 requires both the words being spoken to be correctly 
identified and then identified as originating from the 
claimed speaker (or identifying who that speaker is). Al-
though text-dependent speaker recognition can result in 
improved performance these systems are more complex 
(requiring the use of some form of speech recognition) 
and their practical application limited. Consequently 
there is greater interest in text-independent speaker rec-
ognition which recognizes an individual without any 
constraints on what the individual is saying (although 
it is assumed the individual is actually speaking and, in 
most cases, in the language of interest). 

In this tutorial overview the key emphasis will be 
on text-independent, closed-set, speaker identification 
based on some of the key advances in the modeling 
and classification paradigms in the area. We com-
mence our review with the key features extracted from 
the acoustic waveform in Section II, the main speaker 
modeling paradigms in Section III, the key classifica-
tion paradigms in Section IV and then in Section V 
present some recognition results on a standard speech 
corpus both in clean and in noisy conditions. It should 
be remembered that the technologies used in speaker 
identification are interchangeably adopted by speaker 
verification systems as can be seen by the common 
processing blocks in Fig. 1 and Fig. 2. 

B. Robustness of Speaker Identifi cation Systems
Practical speaker recognition systems are often subject 
to noise or distortions within the input speech which de-
grades performance. In systems deployed for telephony 
applications and in office environments the main form 
of degradation is due to channel variabilities induced by 
the handset and/or microphone. However, for speaker 
recognition carried out in far field applications environ-
mental or background distortions are also of concern. 
Typical solutions to providing robustness in speaker 
recognition can be categorized as feature-based, score-
based or model-based approaches. Feature-based meth-
ods remove the noise from the speaker characteristic in-
formation directly, and include methods such as cepstral 
mean normalization [11], RASTA processing [12], warp-
ing methods [13] and robust parameterizations [14], 
[15]. Score-based methods alter the classifier scores 
at the utterance or frame level, while model-based 
 approaches (such as parallel model combination [16]) 
attempt to incorporate distortion characteristics into 
the speaker models themselves to achieve robustness. 

Traditionally compensation against channel induced 
distortion was of primary concern due to the prevalence 
of telephone recorded speech, and the desire to perform 
robust speaker recognition on this speech (typically 
for security related applications). However, the recent 

 interest in speaker recognition technology for far field 
type commercial applications has increased the need 
for environment distortion compensation. While effec-
tive for channel distortion compensation, the previously 
proposed feature, score and model based robustness 
methods are limited in their suitability for environmen-
tal disturbance compensation: typically these tech-
niques require strict assumptions about the nature of 
the environmental disturbance (such as stationarity), or 
require explicit noise modeling (as in the model-based 
paradigm) resulting in poor performance in unseen 
noise conditions. 

Missing data methods are capable of compensating 
against additive distortions of arbitrary type, and are 
thus naturally suited to the problem of environmen-
tal noise mismatch. These methods are based on the 
time-frequency representation of the speech signal 
and the labeling of each individual time-frequency 
point as speech or noise dominant (‘reliable’ or ‘un-
reliable’). Constructing these labels in the form of a 
time-frequency  reliability mask allows robust recog-
nition to be performed via a reconstruction of the 
speech spectrogram, or by integrating over the noise 
dominated points. The effectiveness of these miss-
ing data approaches is critically dependent on the 
accuracy of the decisions within the reliability mask. 
In the case of a priori noise knowledge the ideal re-
liability mask can be constructed resulting in high 
robustness to extreme non-stationary noises. How-
ever, in practice a priori noise knowledge is not avail-
able and so the reliability masks must be estimated. 
Past research has concentrated on producing accu-
rate mask estimates by utilizing the properties of the 
speech signal as well as auditory and perceptual prin-
ciples. The weakness of these traditional bottom-up 
approaches is the lack of protection afforded to the 
recognizer against errors in the estimated reliability 
decisions. By utilizing top-down knowledge from the 
trained models a significant amount of these errors 
may be removed, thus providing a modification to 
the GMM speaker recognition paradigm which is ex-
tremely noise robust. 

In the latter part of this tutorial we provide a re-
view of the techniques which are beneficial for robust 
speaker recognition. This overview begins in Section 
VI with an examination of traditional feature space, 
score based and model based approaches to noise 
compensation. The missing data approach is intro-
duced in Section VII which initially presents the fun-
damentals of spectrographic masking, reliability mask 
construction and also provides a brief summary of the 
different missing data recognition strategies. A review 
of bottom-up mask estimation methods for speaker 
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identification is then  presented including SNR-based 
approaches, auditory and perceptual methods, and 
classifier-based techniques. Top-down only approach-
es for constructing reliability decisions are then dis-
cussed with emphasis on speaker recognition. Finally, 
motivated by the desire for efficient and robust recog-
nition, we discuss approaches which combine bottom-
up and top-down sources of information. Specifically, 
two distinct combined approaches are reviewed in the 
context of speech recognition, followed by a discus-
sion of the potential of combining information sources 
for missing data speaker recognition tasks. 

II. Feature Extraction 

A. Frames
The most fundamental process common to all forms of 
speaker and speech recognition systems is that of ex-
tracting vectors of features uniformly spaced across 
time from the time-domain sampled acoustic waveform. 
Irrespective of the features derived from the waveform 
(of which there are many) the initial framing of the wave-
form, with reference to Fig. 3, proceeds as follows (the 
numerical parameter values mentioned are those typi-
cally adopted in practice): 

a) Pre-emphasis: A high-pass filter is applied to the 
waveform. This emphasises the higher frequen-
cies and compensates for the human speech pro-
duction process which tends to attenuate high 
frequencies. A simple 1st order, high-pass filter 
is used, with a typical co-efficient value of 0.97 
(i.e. the filter function is y 1 t 2 5 x 1 t 2 2 0.97x 1 t 2 1 2  
where x 1 t 2  is the input speech data and y 1 t 2  is the 
output). 

b) Framing: The time-domain waveform of the utter-
ance under consideration is divided into overlap-
ping fixed duration segments called frames.  Typical 
duration values for frames are anywhere from 
20 ms to 30 ms (usually 25 ms) and a frame is gen-
erated every 10 ms (thus consecutive 25 ms frames 
generated every 10 ms will overlap by 15 ms). 

c) Windowing: Each frame is multiplied by a win-
dow function. The window function is needed to 
smooth the effect of using a fi nite-sized segment 
for the subsequent feature extraction by tapering 
each frame at the beginning and end edges. As 
most features are spectral in nature the Fourier 
Transform is employed and the multiplicative ef-
fect of the window function in the time domain 
is convolutive in the spectral domain. A tapered 
window function creates a smoother and less dis-
torted (by artefacts) spectrum. Without a speci-
fi ed window function the default arising from the 
framing operation is that of a rectangular window 
effect which will generate undesirable spectral ar-
tefacts. Any of the window functions used in FIR 
digital fi lter design can be deployed, with the Ham-
ming window function being the most popular. 

B. MFCC Features
For speaker recognition it is important to extract fea-
tures from each frame which can capture the speaker-
specific characteristics. Many such features have been 
investigated in the literature [17]. Linear Prediction 
Co-efficients (LPCs) have received special attention in 
this regard [18] as they are directly derived from the 
speaker’s speech production model. So too Perceptual 
Linear Prediction (PLP) co-efficients [17], [19] as these 

Figure 3. Analysis block diagram for framing.
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are based on human perceptual and auditory process-
ing. However over the past two decades spectral based 
features, most typically derived by direct application of 
the Fourier Transform, have become popular. Investiga-
tions [19] have shown that the same features adopted in 
speech recognition are equally successful when applied 
to speaker recognition. These features are Mel-Frequen-
cy spaced Cepstral Co-efficients (MFCCs) and their 
success arises from the use of perceptually based Mel-
spaced filter bank processing of the Fourier Transform 
and the particular robustness (to the environment) and 
flexibility that can be achieved using cepstral analysis. 
Referring to Fig. 4 MFCC features are derived as follows: 

a) Fourier Transform: A Fast Fourier Transform 
(FFT) operation is applied to each frame to yield 
complex spectral values. If, say, a 512-point FFT 
is applied, then 256 complex spectral values 
uniformly spaced from 0 to Fs /2 (where Fs is the 
sampling frequency) are produced (ignoring the 
mirror values). In speech processing the phase in-
formation is ignored and only the FFT magnitude 
spectrum is considered. 

b) Mel-spaced fi lter bank values: The N FFT mag-
nitude co-efficients are converted to K filter bank 
values. This is necessary since N 5 256 repre-
sents too much spectral detailed information and 
by smoothing the spectrum to only K 5 30, or so, 
values per frame a more efficient representation 
is achieved. Furthermore this can be carried out 
in a perceptually meaningful way by smoothing 
logarithmically rather than linearly, specifically 
using a Mel or Bark scale. The filter bank values 

are derived by cross-wise multiplying the N FFT 
magnitude co-efficients by the K triangular filter 
bank weighting function from Fig. 5 and then ac-
cumulating or binning the results from each filter 
triangle. The centers of the triangle filter banks 
are spaced according to the Mel scale: 

 fMEL 5 2595 log10 a1 1
fLIN

700
b . (1)

Denote the accumulated output from the kth filter 
bank as Sk. As human hearing exhibits logarithmic 
compression in the dynamic range the log of the 
filter bank output, log 1Sk 2 , is usually taken to re-
flect this. Taking the logarithm is also beneficial in 
that it transforms multiplicative frequency filtering 
channel distortions into additive effects which can 
more easily be compensated for as shown later. 

c) Cepstral analysis: The fi nal step is to convert the 
K log fi lter bank spectral values, 5log 1Sk 2 6k51

K , into 
L cepstral co-effi cients using the Discrete Cosine 
Transform 

 cn 5 a
K

k51
log 1Sk 2  cos cnak 2

1
2
bp

K
d ,  n 5 1, 2, c, L. 

 (2)

Unlike spectral features which are highly correlated, 
cepstral features yield a more decorrelated, compact 
representation. Typically only L 5 12 MFCC co-efficients 
are extracted per frame (which comprises the feature 
vector for that frame). Additionally one can also include 
the special c0 cepstral co-efficient which, by definition 
from (2) when n 5 0, represents the average log-power 
of the frame. However as there is little speaker specific 
discriminant information provided by the average log-
power it is not uncommon to exclude c0, where in most 
cases of its inclusion this is by “default.” 

C. Environmental Compensation
A key advantage in transforming spectral magnitude 
features to log spectral cepstral features is that multi-
plicative channel and environment effects (especially 
arising from the use of different microphones between 

Figure 4. Analysis Block Diagram for MFCC feature vectors.
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the training and testing environments) become addi-
tive [20]. Assuming these effects are invariant for the 
duration of the utterance (and constant across all utter-
ances in the testing or training session) a very simple 
and effective procedure is to subtract the utterance av-
erage MFCC feature vector from the individual utterance 
MFCC feature vectors [11],[21]. The idea is that this will 
remove out any time-invariant channel effects (as well 
as the average speech information) and retain only the 
important dynamic variations which characterise the 
speech of the speaker. These compensated MFCC fea-
tures are derived by the process of cepstral mean nor-
malization (CMN) as follows: 

1) Calculate the mean over all the MFCC features of the 
utterance: mT

S 5 1
T gT

t51 cSt where  cSt 5 3c1,c2, c, cL 4tr 
is the MFCC feature vector at frame index t and 
there are T frames in the utterance. 

2) Compensate the MFCC feature vector at each 
frame by: cS t

c 5 ct
S 2 mST .

In speaker verification this front-end compensation is 
augmented by hand-set or channel score normalization 
strategies [6], [7], [22]. In speaker identification, as in 
speech recognition, other front-end environmental com-
pensation can be implemented, especially if training 
data obtained from the different testing environments 
is available. Specifically CMN can be replaced by both 
mean and variance normalization: ct

Sc5 1cSt 2mSe2  / sSe , 
where the mean, mSe, and variance, sSe, are calculated 
from all of the speaker data derived from the testing en-
vironment, e [21]. Testing environments in this context 
include clean (no noise), different types of noise (e.g. 
white, babble, factory), and variable levels of relative 
noise power (the SNR). 

D. Concatenation with Temporal Derivatives
In speech recognition an important feature process-
ing attribute is to be able to capture and model the dy-
namic, temporal information between frames by con-
catenation of the compensated MFCC feature vectors 
with the first, second and even third order derivative 
approximations. Such dynamic information provides 
vital acoustic clues as to the nature of the speech being 

spoken. Similarly in speaker recognition the dynamic 
information also plays a role in helping to identify 
speaking styles and durations (albeit in a very simplis-
tic fashion compared to prosodic cues). Define cS t

c as 
the compensated MFCC feature vector at frame time 
index t. The first-order derivative or “delta” feature is 
approximated by [23]: 

 d
S

t 5
gP

p51 p Qct1p
Sc  2  ct2p

Sc R
2gP

p51  p
2

 , (3)

where typically P 5 2. By replacing c
S

t
c by d

S
t one can 

similarly derive the second-order delta-delta or “ac-
celeration” parameters, aSt. These temporal deriva-
tives are concatenated with the original MFCC co-
efficients to yield an augmented feature vector. For 
example, with 13-dimensional MFCC feature vectors 
(L 5 12 plus c0) this gives 26-dimensional MFCC 1 
delta features and 39-dimensional MFCC 1 delta 1 
acceleration features. This feature parameterization 
is elucidated in Fig. 6. 

III. Speaker Modeling 

with GMM and GMM-UBM Systems

A. Gaussian Mixture Models (GMM)
Assume an utterance of length T frames for speaker j and 
feature extraction yielding a D-dimensional feature vec-
tor for each frame, that is for each utterance we have: 
5xSt [ RD : 1 # t # T6. How can we now build a model 
for speaker j such that for any utterance from that same 
speaker the T feature vectors will in, some sense, be rep-
resented by that speaker model and not by any other 
speaker models? If we can successfully do this and the 
unknown utterance can somehow be matched to the 
speaker model, we can recognize the speaker. Given that 
utterances from a speaker consist of random sequences 
of time samples covering all possible spoken words a 
statistical model will be the best candidate. In this re-
gard the most generic modeling paradigm one can adopt 
is that of a Gaussian Mixture Model (GMM). A Gaussian 
model assumes the feature vectors follow a Gaussian 

Figure 6. Concatenation of MFCC features with temporal derivatives.
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distribution, characterized by a mean and a deviation 
about the mean. Furthermore by allowing a mixture of 
such Gaussians the distribution of the features from a 
particular speaker may be characterized. Indeed GMMs 
were one of the first modeling paradigms proposed for 
speaker recognition [24], [25] and with advances in the 
parameter estimation, computations and scoring of 
these models, they remain one of the most widely used 
to this day [22], [26]. 

The Gaussian mixture model for speaker j, lj, is a 
weighted sum of M component densities (as depicted by 
Fig. 7) governed by the output probability expression 
(for a given feature vector, xSt): 

 p 1xSt|lj 2 5 a
M

i51
g iN 1xSt ; m

S
i, Si 2 . (4)

where gi are the mixture weights satisfying gM
i51 gi 5 1. 

The N 1xSt ; m
S

i , Si 2  are the individual component densi-
ties, which for a D-variate Gaussian function are of the 
form: 

 N 1 xSt ; mi,
S g i 2 5

1

12p 2D/2|g i|
1/2 e21

2
1Sxt2

S
mi 2r gi

211 Sxt2
S
mi 2 (5)

with mean vector m
S

i [ RD and covariance matrix 
Si [ RD 3D.  The GMM model for speaker j, lj, is param-
eterized by the mean vectors, covariance matrices and 
mixture weights from all M component densities: 

 lj 5 5mSi, Si, gi6j  i 5 1, 2, c, M. (6)

Why are GMMs so successful in speaker recognition? 
This question needs to be asked since the GMM essen-
tially “blindly” pools all of the speech data from a single 
speaker and hence has the difficult task of modeling all 
possible acoustic variations from anything the speaker 
can say (since the system is text-independent). Nev-
ertheless with enough mixtures (on the order of 64 or 
more) the component densities may be able to represent 
the individual speaker’s broad phonetic class distribu-
tion. Indeed given English speech has no more than 45 or 
so distinct phones one can surmise that with at least as 
many mixtures all of the possible distinct ways a speaker 
can speak are modelled. And under the GMM framework 
the overall model provides a smooth transition from one 
acoustic class (or mixture) to the other via the linear 
weighting function defined by (4) thus making the sys-
tem text-independent in nature. 

Given a collection of utterances from speaker j, 
how do we train the model, that is, estimate all of the 
speaker model parameters in (6)? Yet another reason 
for the success of the GMM is the availability of a pow-
erful and versatile parameter estimation paradigm: the 
expectation-maximization (EM) algorithm [27]. The in-
terested reader is referred to the many texts on the pa-
rameter estimation of the GMM for speaker recognition, 

Figure 7. Depiction of the GMM mixtures.
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in  particular [24]. A key feature of the EM algorithm is 
that it can guarantee monotonic convergence to the set 
of optimal parameters (in the maximum-likelihood (ML) 
sense) in only a few (5 or so) iterations. 

Although GMMs are quite powerful they do suffer 
from two important drawbacks. One is the need for 
enough training data to properly estimate the model 
parameters. A common trick is to use diagonal cova-
riance matrices (i.e. Si 5 diag 1s1

2, s2
2, c, sD

2 2 i [ RD) 
rather than “full” covariance matrices which is possi-
ble given that MFCC features vectors are decorrelated 
(i.e. exhibit low correlation values for the off-diagonal 
covariance matrix elements). Not only are computa-
tional resources reduced using diagonal covariance 
matrices but investigations have shown [22], [24] 
that performance is  unimpaired (and in most cases 
even improved). Even so with a typical 128 mixture 
GMM modeling 39 dimension feature vectors, a total 
of 128 3 139 1 39 2 1 128 5 10112 floating-point pa-
rameters have to be estimated and depending on the 
amount of initial training data for each speaker there 
will be an upper limit to the number of mixtures before 
performance degrades due to unreliable estimation of 
too many model parameters. The second problem with 
a GMM, as with any generative modeling paradigm, is 
that data unseen in the training which appears in the 
test data will trigger a low score on that data and de-
grade the overall system performance. For example, a 
particular speaker specific phone feature distribution 
not present in the training data will not be captured 
by the GMM and when this appears in the test data it 
will generate a low likelihood score. The solution is 
simply more and varied training data, but in practical 
speaker recognition this may be hard to come by. In 
section III-B we discuss a clever solution to both of 
these problems. 

The GMM framework just described for speaker iden-
tification is depicted in Fig. 8 where the GMM ML scoring 
is discussed in Section IV. 

B. Universal Background Model (UBM) 
and the GMM-UBM
In speaker verification the claimed identity of the 
speaker is checked by scoring the unknown utterance 
against the claimed speaker model and comparing this 
to the score against the imposter model. The imposter 
model is a GMM which models all speakers other than 
the claimed speaker and is sometimes referred to as 
the Universal Background Model (UBM). In the strictest 
sense for verification the GMM for the imposter model 
should be trained by pooling all of the speaker data 
with the exception of the claimed speaker in question. 
In practice the GMM for a UBM is trained by pooling 

all of the speaker data (including the claimed speaker) 
assuming the available speaker data is balanced across 
all subgroups (e.g. different gender). This has the ad-
vantage that the same UBM can be used for speaker 
verification for any claimed speaker identity. Since the 
amount of training data is greatly increased for a UBM, 
the GMM parameters are reliably estimated and a larg-
er number of mixtures (on the order of 256 or more) is 
not uncommon. Conceptually the UBM represents the 
speaker-independent distribution of features across all 
speaker data. 

Although a UBM can be used in open-set speaker 
identification for the detection of unknown speakers, 
in closed-set speaker identification there is no direct 
need for a UBM since the individual speaker GMMs are 
sufficient to carry out the identification process. How-
ever as the UBM is more reliably trained than any one 
speaker GMM and is also more accurate in modeling 
all of the feature space across all speaker data it does 
not suffer from the problems of insufficient training 
data and unseen data. Statistical models like the GMM 
are not only able to be estimated directly using a pow-
erful technique like the EM algorithm, but with small 
amounts of data the parameters can be further adapted 
to the new data using either Maximum Likelihood Lin-
ear Regression (MLLR) or Maximum A-Posteriori (MAP) 
adaptation [23]. Thus an alternative to the individual 
speaker GMMs is to train a UBM and then form the 
speaker GMMs by adaptation of the UBM using the in-
dividual speaker data as the adaptation data [22]. The 
training and test using this GMM-UBM framework is de-
picted in Fig. 9. 

Figure 8. GMM training and testing framework assuming 
N speakers.
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The governing equation for generic MAP adapta-
tion is: 

 mm
Ŝ 5

Nm

Nm 1 t
 S

2
mm 1

t

Nm 1 t
 mm
S , (7)

where, mŜm, is the adapted mean for mixture m, t is a 
weighting parameter of the a priori knowledge, Nm is the 
occupation likelihood of the adaptation data (individual 
speaker) data, m  S

m, is the speaker-independent (UBM) 
mean and, mm

S2  is the mean of the observed adaptation 
(individual speaker) data. 

As the UBM is initially trained over all of the available 
data, parameters are estimated reliably as there is suf-
ficient data, and even with small amounts of individual 
speaker adaptation data the resultant GMM-UBM will 
be equally reliable, much more so than using the same 
small amounts of data to train a GMM directly. Due to 
the increased training data the number of mixtures in 
a UBM is more than an individually trained GMM can 
reliably estimate and the adapted GMM-UBM has the 
same number of mixtures as the original UBM. Thus a 
GMM-UBM is better able to handle unseen data as it in-
herits the modeling power of the underlying UBM. Ac-
cording to (7) the adaptation algorithm will only adapt 
(i.e. modify) mixture parameters for which observa-
tions exist from the available individual speaker data 
(large Nm 2 , where this data is non-existent  (unseen) 
(i.e. small or zero Nm 2  the original UBM mixtures are 

copied over, thereby mitigating against low scores with 
unseen data. 

C. The Problem with Silence
The GMM estimates the parameters and scores the mod-
els based on all of the utterance data from a speaker. As 
long as the utterance data contains acoustic data from 
the speaker then valid data is being used to estimate or 
score the model. However in practice when speaker data 
is acquired an uncertain amount of initial and end silence 
is present. With a push-to-talk system there could be a 
large silence gap between the activation and the actual 
speech. With an automated system using a Voice Activity 
Detector (VAD) this can be controlled but a small amount 
of silence is always inevitable. As silence data contains 
no speaker (or speech) specific information inclusion of 
such data will degrade the training of the speaker GMMs 
(in proportion to the amount of silence versus speech). 
With only small amounts of beginning and end silence 
a GMM may be able to cope by sacrificing some of the 
component mixtures to model the silence class. Other-
wise as with speech recognition, special silence mod-
els can be specifically trained, however this will then 
require a Hidden Markov Model (HMM) training and 
scoring approach (e.g. as provided by the HMM ToolKit 
(HTK) [23]). With this solution utterances of a speaker 
are used to train the HMM  sequence:  sil1speaker_ID1sil 
instead of the GMM speaker_ID and in scoring a language 
modeling network: [sil] (speaker models) [sil] is adopted 
rather than the GMM scoring of (speaker models). Since 
a GMM is just a single-state HMM, one can indeed do 
this using, say, HTK or equivalent toolkits. Alternative-
ly if one is able to manually segment the training data 
into the speech regions and silence regions the silence 
models can be directly trained and then frames can be 
simultaneously scored against the silence and speaker 
models, and any silence scores ignored [7]. 

D. Other Modeling Paradigms
Although the GMM is the mainstay of speaker modeling, 
it is not the only modeling paradigm to have received 
attention. Here we briefly mention two alternative para-
digms which have also been considered: eigen-voices 
and utterance covarance matrices. 

In the face recognition community, the idea of face-
spaces and eigen-faces has been popularized from the 
view that the pixel face images can be considered as de-
rived from an underlying linear subspace. A similar idea 
can be developed by considering the collection of GMM 
means as representing an underlying linear sub-space, 
where each GMM mean is transformed to a lower dimen-
sion eigen-voice by application of Principle Components 
Analysis (PCA) [28], [29]. Unknown test utterances are 

Figure 9. GMM-UBM training and testing framework as-
suming N speakers. Note that MAP adaptation can only be 
applied after the EM training produces the UBM from all of 
the speaker data.
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then projected onto this eigen-space (formed by the lin-
ear combination of the eigenvoices as the basis vectors) 
and the nearest eigen-voice is the identified speaker. 

The GMM is a model of the speaker derived from all 
of the utterances of that speaker. An alternative view 
is to consider the sampled covariance calculated di-
rectly from the collection of utterance frames. Thus the 
speaker model is not a GMM but a covariance matrix. 
Unlike the GMM which maps the position of the speak-
er’s feature space the covariance matrix captures the 
long-term distribution or shape of the feature space 
as a whole. Thus the covariance will not be sensitive 
to channel biasses nor the short-time speech charac-
teristics [30]. Furthermore by considering utterance 
level covariances (covariance matrix calculated per ut-
terance) one can then consider utterance level scoring 
instead of the usual frame level scoring. 

IV. Speaker Classification with GMM 

and GMM-SVM Systems

A. GMM Maximum-Likelihood (ML) Scoring
In testing, a sequence of T feature vectors are extract-
ed from the unknown speaker utterance. Given a set 
of N GMM (or GMM-UBM) speaker models how do we 
 identify (or classify) the sequence of feature vectors? 
For minimum classification error the optimal classifier 
is given by the speaker model which exhibits the maxi-
mum a-posterior probability [25]: 

 ĵ 5 argmax
1# j#N

 P 1l j|X 2 , (8)

where X 5 5xS1, x
S

2, c, xST6 is the utterance feature vector 
sequence and ĵ  is the identified speaker (classification 
decision). It can be shown this reduces to Maximum-
Likelihood (ML) scoring of the log likelihoods: 

 ĵ 5 argmax
1# j#N

 a
T

t51
log p 1xSt|lj 2  (9)

from which we calculate p 1 xSt|lj 2  using (4). Speaker iden-
tification using GMM ML scoring is depicted in Fig. 10. 

B. Support Vector Machines (SVM) 
for Speaker Recognition
For classification problems most paradigms can be de-
scribed as falling in one of two families: generative mod-
els (like GMMs) which only require training data samples 
from the class or target speaker and build a statistical 
model that describes the target speaker distribution, 
or discriminative classifiers which require training data 
for both the target and non-target (imposter) speakers 
and derive an optimal separation between the different 

speakers. Popular in the latter category for speaker rec-
ognition has been the increasing adoption of Support 
Vector Machines (SVMs). A key feature is that SVMs can 
achieve comparable or superior performance to GMMs 
with much less training data. 

An SVM is basically a two-class classifier that fits a 
separating hyperplane between the two classes (assum-
ing linear separability). The optimal hyperplane is cho-
sen according to a maximum margin criterion. That is, the 
optimal hyperplane is chosen such that it maximizes the 
Euclidean distance to the nearest data points on each 
side of the plane. The nearest data points on each of the 
separating hyperplane are known as the support vectors. 
The basic concept behind this is highlighted by Fig. 11. 
A good tutorial discussion of SVMs can be found in [31]. 

Application of SVMs to speaker recognition requires 
the following considerations: 

 ■ Speakers are not linearly separable and the ba-
sic SVM has to be augmented by the use of slack 
variables and a kernel function that projects the 

Figure 10. GMM ML Scoring.
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non-linearly separable data to a linearly separable 
higher dimension [31], [32]. 

 ■ Standard SVMs as described in, say, [31], are de-
fi ned only for static data vectors. However when 
recognizing speakers, an utterance will generate 
a sequence of feature vectors rather than the one 
data vector. How can one transform the sequence 
of feature vectors to a single data vector suitable to 
be classifi ed by an SVM? Possible solutions include 
the use of a polynomial classifi er [32], sequence ker-
nel functions [33] and GMM supervectors [26]. 

 ■ As SVMs are inherently two-class classifi ers how 
can one extend these to multiclass speaker iden-
tifi cation? This can be achieved by designing a 
one-against-all (OAA) SVM classifi er for each of the 
N speakers. The SVM classifi er for speaker j is a 
two-class system where class 0 is the training data 
from speaker j and class 1 represents all the other 
speaker data (all speaker data except speaker j). 
Identifi cation is then carried out by performing N 
SVM classifi cation operations and selecting the 
SVM with the maximum decision function value.

The functional operation of the OAA SVM classifier for 
a target j can be described as the sum of the kernel 
 functions: 

 Sj 1xS 2 5 a
Nj

i51
ai

j ti
j K 1xS, xS i

j 2 1 d j, (10)

where ai
j are the Lagrangian multipliers, d j is a learned 

constant, x
S

i
j are the support vectors and Nj are the 

 number of support vectors. 
The 1 5ai

j, x
S

i
j6i51

N , d j 2  are obtained from the SVM 
 optimization algorithm [31], [32], [33] given the t i

j ideal 
outputs (ti

j
5 1 for class 0 and ti

j 5 21 for class 1), the 
class 0 (target j) and class 1 (all other) training data, 
and the kernel function K 1 xS, yS2 . The kernel function is 
constrained to be of the form K 1 xS, yS 2 5 B 1xS2rB 1yS2  where 
B 1 . 2  is the mapping from the input space to the higher 
dimensional separating space. 

For speaker identification the sequence of feature 
vectors for the unknown utterance, X 5 5 x1,

S
 x2
S

, c,x
S

T 6,  
is first mapped to a single data point in the higher di-
mension separating space, x

S
 5 V 1X 2 , by one of the 

methods previously described (e.g. a GMM supervec-
tor, see Section IV-C). Identification is then performed 
by determining the SVM classifier with the maximum 
decision function value: 

 ĵ 5 argmax
1# j#N

 Sj 1xS 2 . (11)

The OAA SVM classifier for speaker identification is de-
picted in Fig. 12. 

C. GMM-SVM Speaker Identifi cation System
The face image used in face recognition is the equiva-
lent to the speaker utterance. However in face recogni-
tion the face image can be mapped to a vector of pixel 
values, thus creating a single template vector for the 
person. Thus application of pattern classifiers, such as 
SVMs, in face recognition is relatively straightforward 
since there is a defined template vector or data point for 
each (known or unknown) person. In speaker recogni-
tion, of course, one needs to deal with an utterance of 
arbitrary length T making the application of SVMs and 
similar pattern classifiers more complex. 

Campbell [26] proposed an intriguing application of 
the GMM-UBM to the generation of a speaker template 
which can then be directly used with an SVM classifier. 
The system is depicted in Fig. 13. In the GMM-UBM sys-
tem described in Section III-B the UBM is adapted us-
ing the training data for speaker j to form the GMM for 
that speaker. But by only adapting the UBM to a single 
utterance one can instead form the GMM for that ut-
terance. Although the GMM of an utterance is in itself 
of no practical use, by concatenating the means of the 

Figure 12. OAA SVM classifier, (a) Optimization (training) of 
the classifier and (b) Identification of unknown utterance.

Mapped Data Vector,
x = V(X ) for Unknown
Utterance, X

S . .
 .

Select
Max

j
∧

OAA SVM
Speaker 1

OAA SVM
Speaker 2

OAA SVM
Speaker N

S
S1(x )

S
S2(x )

S
SN(x )

Mapped Data Vector,
x = V(X ) for Each Speaker
j Utterance, X

S

Mapped Data Vector,
x = V(X ) for Each Speaker
i Utterance, X
(i = 1,2,...,N and i ≠ j )

S

OAA SVM
Classifier for

Speaker j

S
Sj(x )SVM

Optimization

Class 0

Class 1

S
({αi xi }

j j

i = 1

Nj
,d j )

(a)  Training Stage

(b)  Testing Stage

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 17,2021 at 17:16:19 UTC from IEEE Xplore.  Restrictions apply. 



SECOND QUARTER 2011    IEEE CIRCUITS AND SYSTEMS MAGAZINE 35 

GMM components, mi 
S , formed by adapting the means of 

the UBM using only the feature vectors from the utter-
ance X  the so-called GMM supervector can be formulated: 

 mSX 5 3mS1r|mS2r|mS3r|c|     m rM
S   4 r, (12)

where mS i is a column vector, mS ir is a row vector and hence 
mSX is a column vector. 

The ordering of the GMM component means is not 
important as long as the same ordering is adopted for 
all utterances. This is guaranteed by the adaptation of 
the same UBM for all speaker utterances. Furthermore 
 adaptation of UBM ensures that even for a single utter-
ance a supervector in a sufficiently high dimensional 
space results (enough mixtures M). For example, with, 
say, a 512-component GMM and 39-dimension feature 
vectors a 512 3 39 5 19968 dimension supervector re-
sults. Thus in the application of SVMs a simple, linear 
kernel and trivial kernel mapping is possible. From [26] 
one solution is to use a linear kernel directly on the data, 
that is, K 1 xS, yS 2 5 xS r yS where the supervectors are given 
by 

 xS 5 mS
|

X 5 S"g1g211/22
1    m1

Sr 0 "g2 g211/22
2  m2

Sr 0
 "g3 g211/22

3  m3
Sr 0c0 "gMg211/22

M  mSMr T r, (13)

which have been scaled by the respective UBM compo-
nent mixture weights and diagonal covariances. 

The concept of a speaker template derived from 
an utterance in this way opens up the possibility of 
directly applying other classification and modeling 
paradigms from pattern recognition, especially those 
popular in face recognition, for example, eigenspace 
analysis [28]. 

V. Speaker Identification Experiments 

and Evaluations

A. Experimental Setup
We now examine the performance of speaker identifica-
tion described previously by carrying out experimental 
evaluations as follows. The three systems for speaker 
identification, GMM, GMM-UBM and GMM-SVM were 
implemented and evaluated under different scenarios: 
clean matched conditions, with additive white noise at 
different signal-to-noise or SNR values, and mismatched 
handset or telephone channels. All evaluations were 
carried out using the widely available TIMIT speech cor-
pus [34]. The TIMIT corpus is a collection of phoneti-
cally balanced sentences, 10 sentence utterances from 
630 speakers across 8 dialect regions in the USA. The 
data was acquired in a clean, studio environment and 

sampled at 16 kHz (8 kHz bandwidth). Although the TI-
MIT corpus is not recommended for speaker recognition 
evaluations due to the ideal acquisition environment 
[35], it is a widely available and still popular speech 
corpus and quite suitable for the tutorial, exploratory 
nature of this investigation. The following software tools 
were used: 

 ■ For the implementation of the GMM and GMM-
UBM systems the Hidden Markov Model ToolKit 
(HTK version 3.4.1) [23], was confi gured to model 
a single-state HMM with the standard MLLR and 
MAP adaptation scripts to adapt the UBM accord-
ingly for the GMM-UBM models and GMM-SVM 
supervectors. 

 ■ For the GMM-SVM the SVM-KM toolbox [36] 
was used to implement the one-against-all SVM 
 classifer. 

 ■ Both additive noise and mismatched channel ef-
fects were created making use of the FaNT soft-
ware [37], especially for the implementation of the 
G.712 and MIRS channel characteristics.

In all experiments a pre-emphasis filter with co-efficient 
0.97 was applied to the sampled waveform and features 
were extracted from each 25 ms frame and generated 
every 10 ms. All frames were windowed using the Ham-
ming window function. Unless otherwise specified, 13 
MFCC features (including c0) were extracted together with 
the delta and acceleration temporal features, yielding a 
39-dimensional feature vector. Environmental compen-
sation by cepstral mean normalization (CMN) was also 
applied to each sequence of MFCC features generated 
from an utterance. 

For all evaluations 64 speakers from the TIMIT cor-
pus were selected for closed-set speaker identification. 
The speakers were evenly balanced between the 8 dif-
ferent dialects and gender (i.e. 32 male and 32 female 
speakers with 4 male and 4 female speakers from each 
dialect region). Following the protocol suggested in 
[25] the 10 utterances per speaker were divided into 
8 utterances for training (two SA, three SX and three 

Figure 13. The GMM-UBM supervector.
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SI sentences) and 2 utterances (remaining two SX sen-
tences) for testing. In evaluations where only 3 utter-
ances for training were used these comprised the three 
SI sentences. 

The key investigations that were undertaken were 
the recognition peformance of the three systems mea-
sured against the number of component mixtures for 
the underlying GMM and the amount of training data, 
and effect on the GMM-UBM performance in additive 
noise at different SNR levels and mis-matched channel 
effects. 

B. Comparison of GMM, GMM-UBM 
and GMM-SVM systems
The number of mixtures for the GMM, GMM-UBM and 
GMM-SVM systems were varied from 8 to 256 mixtures 
and the identification rates are plotted in Fig. 14. As 
expected when the number of mixtures increase the 
GMM’s performance fails as there are too many pa-
rameters that need to be estimated given the limited 
amount of training. The best performance for the GMM 
was 99.2% identfication with 32 mixtures, with perfor-
mance rapidly deteriorating for more component mix-
tures. However for both the GMM-UBM and GMM-SVM 
the performance improved with increasing number of 

 mixtures and achieved 100% with 256 mixtures. The 
results clearly indicate the importance of using a GMM-
UBM approach when confronted with limited amounts 
of training data (which is typical of most speaker recog-
nition applications). 

The effect of the limited training can be further ex-
amined by reducing the number of training utterances 
from 8 per speaker to 3 per speaker. The results are 
plotted in Fig. 15. It is even more evident with these 
results how sensitive the GMM is to the amount of 
training data and the number of mixture components. 
The best result achieved with the GMM was only 79.7% 
with 16 mixtures, and rapid deterioration was ob-
served when more mixture components were added. 
The GMM-UBM and GMM-SVM systems, on the other 
hand, achieved a much better performance of around 
95% with 128 mixtures. To put these results in context 
commercial applications of biometric identification re-
quire error rates to be no more than 2% (ideally 1% or 
better) depending on the number of speakers enrolled 
in the system [1]. 

From the results presented so far the GMM-UBM and 
GMM-SVM achieved similar performance even though 
these represent different classifier paradigms. One 
possible explanation is that the supervector used by 
the SVM is based on the same UBM used by the GMM-
UBM. Another possible reason is that the data set used 
did not sufficiently exploit any of the advantages of a 
discriminant SVM classifier over the generative GMM 
based system. To examine the differences in more de-
tail both the original feature sets and a reduced feature 
set without the inclusion of the temporal derivatives 
(i.e. only a 13-dimension, rather 39-dimension, MFCC 
feature vector) were evaluated on the limited training 
data set for 64, 128 and 256 mixtures and the results pre-
sented in Table 1. For this case the GMM-SVM achieves 

Figure 14. Identification rates with 8 utterances used for 
training.
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Figure 15. Identification rates with 3 utterances used for 
training.
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Table 1.
Identification rates using original features and reduced 
features (without the temporal derivatives) based on 3 
utterances per speaker for training.

GMM-UBM GMM-SVM

Mixtures Original Reduced Original Reduced

64 93.8 92.1 91.4 95.3 
128 94.5 93.0 95.3 96.0 
256 93.8 89.8 93.4 92.1 
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 superior recognition over the GMM-UBM of around 3% 
for all cases when both the amount of training data and 
the number of features is reduced, as compared to when 
only the training data is limited. The results highlight 
the potential superiority of an SVM classifier when pre-
sented with limited amounts of training data and/or re-
duced feature sets. 

C. Effect of Mismatched Channels 
and Additive Noise 
For the remaining experiments we examine the perfor-
mance of speaker identification in the presence of ad-
ditive noise and mismatched channel effects. Results 
are presented only for the 128 mixture GMM-UBM sys-
tem. Similar experiments on the GMM and GMM-SVM 
confirm identical findings, but are not reported here 
for brevity. The feature set used was the 39-dimension 
MFCC 1 delta 1 acceleration vector with and without 
CMN as described below. In all cases the system was 
trained with 8 utterances per speaker filtered by the 
G.712 channel filter characteristic [38] and tested on the 
2 utterances filtered using either the same (matched) 
G.712 characteristic or the different (mis-matched) 
MIRS characteristic. The G.712 applies a flat passband 
response between 300 Hz and 3400 Hz whereas the 
modified impulse response system (MIRS) exhibits a 
rising passband response thus representing different 
telephone or handset characteristics. 

To examine the effect of channel mis-match and 
the importance of CMN in compensating for channel 
 mis-match we first present results in clean (no additive 
noise) using both matched and mis-matched testing con-
ditions, with and without CMN. These findings are pre-
sented in Table 2. The robustness of CMN compensation 
to channel mis-match is evident in the identical recogni-
tion rate of 94.5% in matched (G.712) and mis-matched 
(MIRS) conditions. In contrast to this without CMN there 
is a significant degradation in the mis-matched case, 
from 99.2% in the matched case to only 78.9%. Howev-
er it should be noted that a side-effect of CMN is that 
it can reduce performance in ideal, matched conditions 
(from 99.2% down to 94.5% in this case), but as practical 
scenarios rarely involve ideal conditions the benefits of 
CMN are apparent. 

Speaker identification is a statistical pattern classifi-
cation task and as such is very sensitive to environmen-
tal changes between the training and test conditions 
which can introduce spectral biases and distortions. 
The performance under additive white noise at different 
SNR levels on the test data, with training data not sub-
ject to any noise (clean) is examined for both matched 
and mis-matched channel conditions. The results are 
presented in Table 3. From the results obtained, as 
features were compensated by CMN, there is little per-
formance difference between the channel mis-match, 
but there is significant degradation in the presence of 
additive noise. Even under the mild noisy condition of 
30 dB SNR the recognition performance has dropped by 
about 20% (from 94.5% down to 74.2%). It is quite obvi-
ous that the standard features and modeling paradigms 
described are insufficient to deal with the severe con-
sequences of environmental mismatch due to additive 
noise. In the next section we discuss how to embed ro-
bustness in speaker identification systems, especially in 
regards to additive noise. 

VI. Robustness for GMM Speaker Identification

Despite the high recognition accuracies produced by 
Gaussian Mixture Model based identification systems 
in clean conditions, in practice noise distortion often 
affects the input test speech leading to a dramatic deg-
radation in performance. These distortions are typi-
cally categorized as channel effects (which result from 
differences in the characteristics of the handsets or mi-
crophones used to capture training or testing speech), 
or environmental effects such as background noise. 
Both of these effects produce a mismatch between the 
speaker dependent information extracted from the in-
put speech utterance, and the information contained 
within the trained model corresponding to the true 
speaker. Achieving robustness to these effects requires 
a modification of the standard GMM speaker identifica-
tion framework. 

In this section the effect of training-testing mismatch 
on GMM based speaker identification is outlined, and a 

Table 2. 
Effect of matched (G.712) and mismatched (MIRS) training 
and testing environments with and without cepstral mean 
normalization (CMN) for the 128 mixture GMM-UBM system.

G.712 MIRS

with CMN 94.5 94.5 
without CMN 99.2 78.9 

Table 3. 
Effect of additive white noise (at different SNRs) and 
matched/mismatched channels on the 128 mixture 
GMM-UBM system and the standard features (with CMN).

G.712 MIRS

clean 94.5 94.5 
30 dB 74.2 75.8 
20 dB 42.2 39.8 
 10 dB 10.9 7.8 
   5 dB 3.1 2.3 
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brief review is provided for some of the common noise 
robustness techniques which are applicable to speaker 
recognition systems. 

A. Speech Distortion and GMM Mismatch
Consider a recognition system where each speaker is 
represented by a clean speech trained GMM. In a prac-
tical test environment the classification of a sampled 
speech utterance signal s 1z 2  will be performed in the 
presence of a noise distortion signal n 1z 2 . Therefore, 
at the speaker recognizer input the received test signal 
x 1z 2  is a function of both the speech signal and the 
noise distortion: 

 x 1z 2 5F 1s 1z 2 , n 1z 22 ,  (14)

where z is the sample index and the functional relation-
ship F  is dependent on the type of distortion experi-
enced. In the case of channel distortion the mismatch 
is often approximated by a convolutional relationship 

between the time domain speech and noise signals, 
where n 1z 2   represents the impulse response of the filter 
approximating the channel: 

 x 1z 2 5Fchannel 1s 1z 2 , n 1z 22 5 s 1z 2 * n 1z 2 . (15)

In the spectral energy domain the received signal is 
obtained by multiplication of the speech signal spectra 
S 1 f 2  and the channel frequency response N 1 f 2 . Follow-
ing the filterbank and log magnitude feature extraction 
operations (as described in Section II-B), the received 
 signal’s log-spectral value for filterbank component f  
processed from time frame t is given by: 

 log Xt 1 f 2 5 log St 1 f 2 1 log Nt 1 f 2 . (16)

For environmental distortion there is an additive rela-
tionship between the sampled time domain speech and 
noise signals: 

 x 1z 2 5Fadditive 1s 1z 2 , n 1z 22 5 s 1z 2 1 n 1z2 . (17)

The corresponding relationship in the log-spectral do-
main is non-linear: 

 log Xt 1 f 2 5 log 3St 1 f 2 1 Nt 1 f 2 4. (18)

Conversion of the log-filterbank values to cepstral coef-
ficients requires the application of the Discrete Cosine 
Transform (DCT) (see Section II-B). Due to the linear na-
ture of the DCT, the relationship between the speech and 
noise spectra remains linear in the case of convolutional 
distortion and non-linear for additive effects. Therefore, 
the presence of a noise signal with sufficiently large ener-
gy compared to the speech signal will produce variation 
in the feature values extracted, regardless of whether 
such features are cepstral or spectral based. Within the 
statistical GMM classification framework, this mismatch 
between the clean trained component distributions in the 
true speaker model l and the feature observation vector 
x
S

t extracted from the noisy input speech signal results 
in a decrease in the frame likelihood scores p 1 xS t|l 2  (as 
in (4)). When the scores are accumulated over all frames 
in the utterance (as in (9)) an incorrect ML speaker de-
cision is often produced (see Fig. 16). Typically the ex-
tent of the feature mismatch is dependent on the relative 
speech-to-noise energy (the SNR) of the input utterance, 
and the time-varying nature of the noise process. 

Traditionally speaker and speech recognition systems 
have utilized telephone speech where channel effects 
(such as handset mismatch) are the dominant distortion 
source [39]. Previous approaches to providing robust-
ness against these effects can be categorized as feature 

Figure 16. The maximal mixture Gaussian for log-filter-
bank feature components 1, 4 and 17 of TIMIT speaker 
fadg0’s GMM. Distributions are shown from the training 
data in clean conditions (solid) and the same data in 20 dB 
(a), 10 dB (b) and 0 dB (c) additive white noise conditions 
(dashed).
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based compensation, which is concerned with removing 
the effect of the noise within the feature parameter-
ization, score based compensation which attempts to 
remove model score biases and shifts due to acoustic 
variabilities, and model based compensation which al-
ters the learned speaker models in an attempt to sensi-
tize against the distortion and thus reduce mismatch. 

B. Feature Compensation Approaches
The focus on feature compensation approaches for 
noise robustness in past work is due to the importance 
of the feature extraction stage in the speaker recogni-
tion process. The ideal feature set should provide dis-
crimination between speakers while exhibiting invari-
ance to non-speaker characteristic information within 
the input speech. In this way the design of noise robust 
features has the advantage of generality in that a single 
technique may show robustness to multiple types of 
distortion. This is illustrated in Fig. 17, where a feature 
compensation stage may be inserted following extrac-
tion and pre-recognition. 

Motivated by the ability of cepstral features to pro-
duce high speech and speaker recognition rates in clean 
conditions, compensation approaches which apply 
normalization to these standard features are  common. 
Cepstral Mean Normalization (CMN) compensates 
against linear filtering effects (such as channel distor-
tion) by taking advantage of the additive nature of the 

distortion in the log-spectral domain [18], [40], [11]. If 
in the cepstral domain the clean speech contribution 
has zero mean, subtracting the time averaged value 
from each cepstral coefficient is effective in remov-
ing the contribution of the channel. Evaluations have 
shown that the removal of global cepstral means prior 
to training and recognition improves robustness to 
intersession variability [19], [11]. Despite its benefits 
for mismatched channel compensation, when applied 
to matched clean speaker recognition tasks cepstral 
mean normalization causes performance loss (see Tab. 
II). This is due to the assumption that the cepstral time 
average of the corrupted received speech approxi-
mates that of the channel distortion, however this is 
only valid given sufficient phonetic balance within the 
speech utterance such that the speech cepstral mean 
is zero [17]. Methods such as augmented CMN [41] 
have been recently proposed to address this, where 
the probable noise and speech regions are normalized 
with different values leading to a reduction in error 
rate over the standard algorithm. Other modifications 
attempt to improve CMN in additive noise conditions 
including Fixed Codeword Dependent Cepstral Normal-
ization (FCDCN) and variants which aim to reduce en-
vironmental dependence [42]. 

The relative spectral (RASTA) approach [12] also aims 
to provide compensation against channel  distortion. 
The method is based on the observation that the rate of 

Figure 17. The feature compensation approach for robust speaker recognition. Following extraction each cepstral or spec-
tral vector is altered by the compensation technique in order to reduce the effect of the noise. Recognition is then per-
formed using the compensated vectors.
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change of distortion effects within a corrupted speech 
mixture will significantly differ compared to the change 
of the vocal characteristics. Thus, by suppressing 
slowly varying components over all frequencies in the log-
spectral domain, those constant components which rep-
resent the channel are removed [20], [43]. Compared to 
CMN, RASTA has an advantage in that its suppression of 
components is dynamic and as a result the application 
of standard RASTA compensation to the matched clean 
case produces negligible decrease in performance. 

In addition to techniques which remove or sup-
press channel contributions, research has focused on 
modification of the power spectral representation tech-
nique itself to enhance robustness. Linear predictive 
(LP) analysis features are based on an all-pole model 
which captures vocal tract information in the magni-
tude spectrum of the LP filter response, and pitch in-
formation within the LP residual [44]. Unlike filterbank 
based features where spectral detail over frequency 
is fixed (MFCC, LFCC), LP cepstral coefficients are 
adaptive in that the detail in the representation of the 
spectral peaks is limited only by the model order. The 
clear separation of vocal tract and pitch information is 
advantageous for robust speaker identification due to 
the ability to characterize the vocal tract properties in 
the presence of some types of noise [17], [45]. Standard 
LP cepstral analysis has been augmented with weight-
ing schemes to improve robustness. Basic liftering pri-
oritizes low order coefficients due to their sensitivity 
to spectral slope while minimizing the noise sensitive 
higher order coefficients. Adaptive component weight-
ed cepstrum (ACW) normalizes residues within the LP 
transfer function such that formants are emphasized 
while variations due to channel distortions are sup-
pressed [46]. Post-filter cepstrum is conceptually simi-
lar in that it seeks to emphasize formant regions on the 
assumption that the effect of noise is lessened in these 
regions [47]. 

The performance of the traditional cepstral features 
and channel compensation methods was compared for 
speaker identification [19]. The results showed that 
recognition performance using both the filterbank 
based (MFCC, LFCC) and linear predictive based ceps-
tral features (LPCC, PLPCC) degraded significantly 
in the presence of mismatched telephone channel ef-
fects. Of the channel compensation methods tested, 
CMN was found to be superior to RASTA in most cases 
where Reynolds [19] cites the short time window used 
to calculate the RASTA channel means as a possible ex-
planation. The study concludes that for robust recogni-
tion with channel distortion the compensation method 
applied has greater importance than the base cepstral 
feature utilized. 

Feature transformation approaches have been pre-
viously utilized to remove channel variability and im-
prove speaker recognition robustness. In the cepstral 
domain, affine transforms have been proposed to cor-
rect feature distortion due to noise [17]. By modeling 
the effect of the noise distortion on the speech as an 
affine transformation compensation can be achieved 
by applying the appropriate inverse transform. Subject 
to correct selection of the transform parameters, affine 
transforms can model composite channel distortion and 
stationary additive noise effects leading to improved 
speaker recognition rates. A more recent approach 
performs MAP adaptation from a channel independent 
model to a set of channel dependent models, and utiliz-
ing the mapping parameters in the feature domain [48]. 
The approach shows a significant reduction in error rate 
compared to the uncompensated system when evaluat-
ed on verification tasks with Switchboard-II landline and 
cellular speech data. While similar to model synthesis 
approaches (discussed in detail later) utilizing the map 
information in the feature domain provides generality 
and enables the use of the technique for speech recog-
nition. A feature warping approach has also been pro-
posed which involves altering the distribution of a ceps-
tral feature stream over a certain time interval to match 
a target distribution [13]. By conforming the distribu-
tion of the individual feature components to a particu-
lar form the variation experienced by the distribution 
across environments is reduced. Speaker verification 
experimentation on the NIST 1999 database shows that the 
warping approach is at least comparable to other com-
mon compensation techniques (such as mean normal-
ization) in all cases [13]. 

Reducing telephone handset mismatch was the specif-
ic focus of the feature compensation method developed 
by Quatieri and colleagues [49]. By matching the spectral 
magnitude of the distorted signal to the output of a refer-
ence driven channel model, a handset mapper is designed 
which improves consistency between high quality train-
ing data and low quality testing data. Using HTIMIT [50] 
to train the mapper, recognition tests on NIST 1997 and 
NIST 1996 data showed improvement over the uncompen-
sated baseline. Heck et al. use a discriminative feature 
design approach to further increase speaker recognition 
system robustness to telephone handset mismatch [51]. 
A non-linear artificial neural network is discriminatively 
trained for speaker recognition rate maximization under 
handset mismatch, and is employed to transform stan-
dard cepstral features. The method significantly outper-
forms a baseline mel-cepstral mean normalized system 
while not requiring stereo training data. 

Despite the success of feature space techniques in re-
ducing channel distortion effects, applying compensation 
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to standard cepstral or spectral features is less effective 
for eliminating environmental noise. Some past research 
has attempted to address this by examining alternate fea-
ture parameterizations which inherently provide more 
robustness to additive artifacts. Higher order spectral 
domains are advantageous for robust feature extrac-
tion due to the preservation of phase relations and in-
formation about Gaussianity which is not contained in 
the power spectrum [14]. Specifically bispectral mag-
nitude based features have been proposed to suppress 
the effects of additive Gaussian noise on input speech 
signals for speaker identification [15]. An integrated 
bispectral phase feature has also been developed to 
perform identification under clean and mismatched 
conditions [52], [53]. Evaluation results suggest the 
feature can approximate MFCC performance for clean 
speech testing, and provide large improvements over 
the cepstral feature in low SNR additive white noise 
distortion. The disadvantage of higher order spectral 
based features is the large computation time required 
for spectral estimation, and this has largely prevented 
their use in the feature extraction stage of practical 
real-time systems. 

C. Score Compensation Approaches
Although feature compensation approaches are effective 
in reducing linear channel effects, practical telephone 
handsets may induce other non-linear degradations on 
the input speech signal [39]. Score compensation meth-
ods attempt to eliminate the effects of these distortions 
on log-likelihood scores produced by the GMM recog-
nizer (as shown in Fig. 18). To achieve this the handset 
dependent score normalization technique (H-norm) was 
developed which involves the construction of GMMs to 
model non-linear uncompensated channel effects with-
in each of the relevant conditions [22]. During recogni-
tion the test segment is assigned a handset type clas-
sification based on the handset GMMs, and the speaker 
GMM likelihood is modified by normalization with the 
handset model parameters. Results on the NIST 1998 
and NIST 1999 databases showed that H-norm improved 
robustness against channel mismatch for verification 
tasks, but is also applicable to speaker identification. 

Other score normalization methods previously uti-
lized in recognition tasks with channel variability in-
clude Z-norm [54] and T-norm [55]. Z-norm has an ad-
vantage in that it does not involve the explicit labeling 

Figure 18. The likelihood score compensation approach for robust speaker recognition. The likelihood scores of the uncom-
pensated feature vector on each speaker GMM are normalized through the use of an appropriate channel model. Classifica-
tion may then proceed with the normalized speaker scores.
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of each test utterance according to its channel type, 
and estimation of the normalization parameters can 
be performed offline. The T-norm approach extends 
this by scaling the score distribution with the vari-
ance of the imposter scores. Since the mean and vari-
ance normalization parameters are estimated from the 
test utterance, T-norm avoids the test-to-normalization 
mismatches which are possible in Z-norm [55]. An ex-
perimental evaluation comparing T-norm and Z-norm 
approaches was conducted on cellular data from the 
NIST 2001 database, and the results showed T-norm 
produced superior verification rates particularly at low 
EERs [56]. Other evaluations suggest that for data which 
has significant handset degradation the combination of 
H-norm and T-norm approaches (HT-norm) provides im-
proved performance [55]. 

Score normalization approaches have also been pre-
viously applied directly to speaker identification tasks. 
In early work Gish and Schmidt combine multiple model 
training with segmentation and normalization to limit 
the effect of mismatched conditions [4]. Scoring using 
multiple GMMs trained on different conditions, the best 
likelihood over all models is considered for each  speaker 
and normalization is performed to allow segment com-
parisons. A frame level normalization approach is pre-
sented by Markov and Nakagawa [57] where for each 
frame the speaker model likelihoods are ranked allow-
ing model weights to be assigned using an arbitrary 
 weighting function. Classification is performed using 
accumulated weight scores instead of the frame likeli-
hood values. This frame level approach was adapted by 
Zheng et al. specifically to eliminate channel variability 
[58]. For the model likelihood scores of a test frame, a 
non-linear transformation was applied in order to ac-
centuate the frame score between speakers and pro-
mote consistency between scores over all frames for the 
same speaker. Results of an experimental evaluation on 
the NIST 2000 database showed that combining frame 
level likelihood normalization with a GMM-UBM recog-
nizer significantly improved identification error due to 
channel distortion, provided the score transformation 
parameters were adequately tuned. 

D. Model Compensation Approaches
Model based compensation involves the modification 
of the trained GMM distributions in order to learn the 
noise characteristics, and thus increase the robustness 
of the recognition decisions (see Fig. 19). Such methods 
which address channel based distortions have been 
developed for speech recognition, however adaptation 
based approaches that adjust model parameters to rep-
resent test data are not readily applicable in speaker 
recognition due to the accompanying loss of speaker 

discriminative information. A simple approach to the 
model based compensation of telephone handset mis-
match utilizes handset dependent background models 
to separate true and false speaker verification score 
distributions [59]. A handset classifier was applied dur-
ing enrollment to ensure that normalization of scores 
on this model were performed with the matched hand-
set type. Experimental evaluation showed that using 
handset dependent models to normalize the claimant 
scores reduced mismatch bias and improved false alarm 
rates. For speaker identification tasks it is only the mis-
match between trained model conditions and testing 
conditions which must be compensated. An extension 
of handset dependent modeling to identification tasks 
would therefore require the construction of speaker 
specific GMMs in each channel condition. 

Probabilistic factor analysis approaches utilize large 
amounts of multicondition enrollment data in order 
to jointly model inter-speaker and channel variability 
[61]. The motivation of this method is to allow adap-
tation based channel compensation for speaker rec-
ognition, while preventing reductions in inter-speaker 
variability (as is observed when applying traditional 
speech recognition adaptation techniques). In combin-
ing the speaker supervector prior formulation from the 
eigenvoice MAP, eigenchannel MAP and classical MAP 
techniques, speaker and channel factors are used to 
represent the inter-speaker and channel variation re-
spectively between supervectors from the testing ses-
sion and the enrolled speaker model [61]. For text-inde-
pendent verification tasks on the NIST 2000 database, 
factor analysis produced a significant improvement 
over handset detection based approaches [62]. Despite 
recent research to improve its computational require-
ments [63], the factor analysis approach is limited by 
the computational complexity in both training (to esti-
mate the speaker-independent hyper-parameters) and 
testing (to calculate the model likelihoods). 

In practical applications it is unlikely that sufficient 
training data will be available for each speaker over all 
channel types which require compensation. As depicted 
in Fig. 19, the Speaker Model Synthesis (SMS) method 
addresses this issue by learning model parameter 
changes between different channels allowing synthesis 
of speaker models in unseen training conditions [60]. 
A channel independent multicondition GMM is firstly 
constructed using all data from a collection of chan-
nels. Using channel specific data, MAP adaptation is 
then applied to produce channel dependent GMMs, and 
transformations between different channel models are 
learned. For speaker training under a particular chan-
nel type, the effect of mismatch during testing may be 
reduced by synthesis of the training channel type to the 
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testing channel type using the channel dependent trans-
form [60]. 

The implementation of model synthesis for identifi-
cation requires information about the mismatch to be 
extracted from the test speech waveform. Murthy and 
colleagues proposed a channel mismatch compensation 
method which learns a synthetic variance distribution 
(SVD) from stereo data recorded from multiple handsets 
[64]. Utilizing this distribution, a handset independent 
transformation is applied to the component variances 
within the trained speaker GMMs with the aim of in-
creasing robustness to channel effects. Experimental 
evaluation on speaker identification tasks using the 
NIST 1996 database showed that fixed target transformation 
of the variances based on the SVD reduced the EER com-
pared to the uncompensated case. 

Model domain adaptation approaches may also 
provide robustness to environmental noise effects. 
Proposed for robust HMM-based speech recognition, 

parallel model combination (PMC) constructs noise 
corrupted speech models by combining the individual 
HMMs which model the speech and noise [16]. The tech-
nique is similar to HMM decomposition [65], although 
PMC may operate with cepstral based features by 
transforming the model parameters back into the log-
spectral domain before combination via the mismatch 
function. This type of adaptation has been shown to 
be effective for compensating against additive noise 
for speech recognition [16], [96] and has been recently 
applied to the robust text-dependent verification task 
[67]. For an evaluation on the YOHO database [68], ap-
plying PMC to HMM-based text-dependent verification 
significantly improves the EER (relative to the MFCC 1 

CMN baseline) in stationary and non-stationary noise 
cases. However, the application of PMC to GMM text-
independent speaker identification tasks may be prob-
lematic due to the unconstrained nature of the speech 
and the subsequent lack of temporal  information 

Figure 19. An example of model compensation for robust speaker recognition. The speaker model synthesis method [60] is 
depicted, where mismatch is reduced through MAP adaptation based on channel transforms learned from trained channel 
models.
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 captured by the speaker models (since phonemes can-
not be easily modeled). 

VII. Missing Data Robustness

Despite significant past research, the traditional ap-
proaches to providing robustness for speaker rec-
ognition have various limitations. Although feature 
domain compensation provides a generic and widely 
useful robustness framework which is model indepen-
dent, it has limited effectiveness against non-linear 
channel effects and non-stationary additive distor-
tion. For speaker identification, feature domain com-
pensation methods can effectively reduce channel 
distortion effects, but cannot handle environmental 
distortion without the availability of matched models. 
Frame-based normalization may reduce the sever-
ity of these distortions when occurring sporadically 
over short intervals, but not when the majority of the 
test utterance is affected. Model-based approaches 
can generally provide strong robustness to channel 
effects and some additive distortions, however they 
have the disadvantage of requiring modifications to 
the speaker models and typically need noise knowl-
edge to perform the adaptation. These methods are 
thus generally not suitable for providing robustness 
in rapidly changing environments. With the increas-
ing demand for speaker recognition in modern practi-
cal applications, effective robustness strategies must 
provide resistance to transient and non-stationary en-
vironments of an unknown nature. 

Missing data approaches provide compensation 
against arbitrary disturbances within a speech signal, 
and are thus capable of dealing with the problem of 
environmental noise. These methods are based on 
the observation that speech signals have a high de-
gree of redundancy, where information about the un-
derlying speech characteristics persists even in the 
presence of extreme distortion. Initially formulated 
as a technique for recovering partially occluded ob-
jects in image recognition [69], the missing data ap-
proach has a conceptual relationship with the human 
auditory system and its ability to process corrupted 
speech signals [70], [71]. The approach is based on 
a time-frequency analysis of the input speech signal, 
and the subsequent quantification of noise in each in-
dividual time-frequency point. Recognition occurs by 
utilizing the time-frequency regions labeled as speech 
dominant such that the effect of the noise is dramati-
cally reduced. In this section missing data approach-
es for speaker identification are examined, including 
an introduction to the fundamentals of missing data 
processing, an outline of previous mask estimation 
methods for speaker identification, and a review of 

recently proposed model based constraints for miss-
ing data systems. Finally, we discuss the potential of 
approaches aimed at combining information from the 
signal and the trained models for increased speaker 
identification robustness. 

A. Spectrographic Representations 
and Reliability Masking
In missing data approaches the time-frequency represen-
tation of the speech signal is used to model its noise cor-
ruption. Consider a clean speech sampled signal in the 
time domain represented by s 1z 2 , where z is the sample 
index. Applying a windowing function, taking the magni-
tude of the FFT, and passing the output through a Mel-
filterbank (as in (1)) produces the power spectral rep-
resentation Sp 1 t, f 2 , which represents the speech signal 
energy at time frame t and frequency channel f. The final 
time-frequency representation is obtained by applying a 
compressive non-linear function which, in this analysis, 
is assumed to be a logarithm: S 1 t, f 2 5 log Sp 1 t, f 2 , where 
S 1 t, f 2  is the log-spectral value at location 1 t, f 2  of the sig-
nal’s  spectrogram. 

Corrupting the speech signal with an additive un-
correlated noise process with power spectrum Np 1 t, f 2  
produces a received signal with power spectra Xp 1 t, f 2 , 
which is equivalent to the sum of the clean speech and 
noise spectra: 

 Xp 1 t, f 2 5 Sp 1 t, f 2 1 Np 1 t, f 2 ,  (19)

where the complete power spectral representations of 
the corrupted speech, clean speech and noise signals 
are given by Xp, Sp and Np respectively. Let the corre-
sponding log-spectral representations be  denoted as 
X, S and N. The clean speech spectrogram S consists of 
a series of (log-)spectral vectors sS t 5 S 1 t 2  for time frame 
t, and each spectral vector has individual spectral com-
ponents stf 5 S 1 t, f 2 [ s

S
t for each channel f  of a D-dimen-

sional filterbank.  Applying equivalent notation to the 
corrupted speech and noise signals their spectral vec-
tors at time t are denoted by xS t and n

S
t respectively, and 

the individual spectral components at time-frequency 
location 1 t, f 2  by xtf  and ntf  respectively. 

Due to the time varying nature of the speech and noise 
spectra, the severity of the distortion varies over time 
and frequency. The strength of the distortion at a given 
1 t, f 2  location is quantified by the signal-to-noise ratio 
(SNR): SNR 1 t, f 2 5 Sp 1 t, f 2 /Np 1 t, f 2 . The spectrogram of 
the corrupted speech signal typically contains regions of 
high SNR, where the speech contribution dominates, and 
regions of low SNR where the noise characteristics are 
dominant [72]. It is the occurrence of the low SNR regions 
in the spectrogram which decreases the performance of 
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speech processing systems, and the relative proportion 
of these low SNR regions increases with increasing noise 
strength (compare Fig. 20(a) and 20(b)). 

Conceptually, missing data processing is based on 
the idea that by identifying the speech and noise domi-
nant parts of the corrupted speech spectrogram the 
noise induced degradation can be minimized, and recog-
nition performance may approximate that obtained by 
full knowledge of S. For a given corrupted speech signal 
vector x

S
t , individual time-frequency components with a 

high SNR are similar to their corresponding clean speech 
spectral values and are labeled ‘reliable’. Conversely, 
time-frequency components in x

S
t with a low SNR signifi-

cantly differ from the clean speech value and are labeled 
‘unreliable’. The assignment of reliability decisions to 
components within all frames is represented by a time-
frequency reliability mask M  (see Fig. 20(c)). For a binary 
mask decision domain the components are considered 
as reliable (mt f 5 1) or unreliable (mtf 5 0) with absolute 
certainty, while soft masking allows for uncertainty in 
the decision by interpreting the mask value as a proba-
bility of reliability (mtf [ 30, 1 4) [73]. In this review we are 
concerned only with binary reliability decisions. Given 
the binary mask vector m

S
t , the spectral vector x

S
t can be 

separated into reliable (r) and unreliable (u) component 
vectors according to x

S
tr 5 5xtf|mtf 5 1, f 5 1, 2, c, D6 

and xStu 5 5xtf|mtf 5 0, f 5 1, 2, c, D6. For similarly sepa-
rated vectors of the clean speech signal sS tr and sStu the 
following relations are assumed between clean and cor-
rupted speech reliability sub vectors 

 xS t r
5 sStr  (20)

 xS tu $ sStu. (21)

The first relation is a consequence of the compressive 
nature of the log operation on the spectral values: for a 
 reliable component Sp 1 t, f 2 . Np 1 t, f 2  in the log domain we 
have xtf 5 X 1 t, f 2 5 log 3Sp 1 t, f 21Np 1 t, f 24 < log 3Sp 1 t,f 24 < stf. 
Since it is assumed that the spectral values of Sp 1 t, f 2  
and Np 1 t, f 2  are non-negative, it follows that Np 1 t, f 2 $ 0 
and 0 # Sp 1 t, f 2 # Xp 1 t, f 2 . In the log domain 0 # stf # xtf, 
and this bounding constraint may also be utilized in the 
recognition process (see Section VII-B2). 

The robustness provided by missing data compensa-
tion is dependent on the accuracy of the reliability label-
ing. When full a priori noise knowledge is available ideal 
spectrographic masks can be constructed according to 
an SNR-based criterion: 

 mtf
oracle 5 e1 if 10 log10 3Sp 1 t, f 2 /Np 1 t, f 2 4 . uoracle,

0 otherwise,
 (22)

where uoracle is a threshold in dB. Construction of the 
oracle time-frequency mask is shown in Fig. 21. When 

uoracle 5 0 dB the reliability assignment is determined by 
whether the speech energy exceeds the noise energy, 
however in previous studies the value of uoracle has been 
increased to attempt to ensure that only speech domi-
nant points are reliably labeled [74]. Although there 
is no single optimal value for the threshold, typically 
uoracle [ 323 dB, 3 dB 4 for the calculation of these ideal 
(‘oracle’) masks [72], [75]. 

Figure 20. (a) Spectrograms for a speech utterance from 
the TIMIT database in clean conditions, and (b) in additive 
white noise at 5 dB SNR. (c) Also shown is the reliability 
mask containing (ideal) reliability labels for time-frequency 
 regions in the utterance. (a) Clean spectrogram. (b) Speech 
and noise spectrogram. (c) Oracle reliability mask.
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B. GMM Recognition with Missing Data
Given the corrupted received speech signal feature 
representation X, and the binary time-frequency reli-
ability mask which partitions each vector xSt [ X  into 
reliable and unreliable subsets xStr and xStu, missing 
data recognition methods must perform classifica-
tion only with this partial knowledge. There are two 
distinct paradigms which may be used to achieve 
this [72]: 

1) Feature Vector Compensation, where the log-
spectrogram of the clean speech signal S is recon-
structed by utilizing the reliable subsets x

S
r to esti-

mate the true clean speech values of the unreliable 
subset (i.e to fi nd sSu # xSu for all frames). 

2) Classifi er Compensation, where the computation 
of the frame likelihood p 1xS|l 2  within the GMM 
recognizer is modifi ed to accommodate the pres-
ence of unreliable data.

1) Feature Vector Compensation
These approaches utilize the reliability information as 
input to a classification problem which estimates the 
true value of the unreliable spectral components in a 
vector based on a priori knowledge of the speech spec-

trographic structure (as in Fig. 22). Specifically, clean 
speech training produces a Gaussian estimate of the 
clean speech spectrogram values conditional on the 
observed reliable components. There are two main 
 variants to feature compensation: cluster-based recon-
struction and covariance-based reconstruction. 

a) Cluster-Based Reconstruction
The cluster-based approach assumes that spectrograph-
ic component values are time invariant, and models the 
spectral vectors within a clean speech signal as indepen-
dent and identically distributed random variables. The 
distribution of clean spectral vectors, as obtained from a 
training data set, is assumed to consist of clusters where 
all vectors belonging to the cluster share the cluster 
distribution [75]. Assuming the cluster distributions are 
Gaussian the distribution of an arbitrary spectral vector 
xS  is given: 

 P 1xS 2 5 a
V

v51
gv 

1
12p|Qv|2D/2 exp e2

1
2
1 xS 2  mS v 2rQ21

v 1 xS2mSv 2 ,
 (23)

where D  is the vector dimension, gv is the a priori proba-
bility that xS  belongs to cluster v, and mv, Qv are the mean 

Figure 21. The calculation of the ideal time-frequency reliability mask given the clean (a priori) and the corrupted (re-
ceived) test utterance spectrograms. By converting the log-spectrographic representations back into the power spectral 
domain, the noise power may be calculated and reliability labels assigned to each time-frequency (TF) point. A threshold 
of uoracle 5 0dB is used.
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and variance respectively of cluster v [75]. The first step 
in the re-estimation process is the  determination of the 
cluster membership vx

S for speech vector x
S

 with reliable 
and unreliable subsets x

S
r and x

S
u : 

 v̂xS 5 argmax
v  

5p 1 xSr|v 2P 1v 2 6. (24)

Since only the values of x
S

r  approximate the clean 
speech signal, the cluster membership estimate v̂x

S  is 
obtained via a ML decision by integrating over the un-
reliable components to obtain the marginal density 
p 1 xSr|v 2 . Once the cluster membership has been identi-
fied MAP estimation is applied on the relevant cluster 
distribution to estimate the clean values x

Ŝ
 <s

S
u cor-

responding to the received subset x
S

u, conditional on 
sSu # xSu [72], [75], [76]: 

 xŜu 5 mS v,u 1 Qv,ur Q
21
v,uu 1 xSr2mS v,r 2 , (25)

where s
S

r  < x
S

r and mv,r, mv, u, Uv, ru, Uv, rr are the mean and 
variance parameters partitioned according to subsets 
x
S

r and x
S

u. Recognition (or cepstral transformation) 
may then proceed with the imputed spectral vector 
x
S

5 1 xSr,   xu
Ŝ 2.

b) Covariance-based Reconstruction 
In correlation-based approaches the reconstruction of 
an individual component is dependent on its  correlation 
with all other components, and spectral vectors are thus 
modeled as samples of a stationary Gaussian random pro-
cess. Estimation of the Gaussian process parameters are 
performed using clean speech training, where the order of 
emission of the spectral vectors has no influence on their 
model means and inter-element covariances. That is, for a 
received spectral vector x

S
t with components xt1f1, xt2f2 [ x

S
t  

the mean of component xtf and covariance between com-
ponents xt1f1, xt2f2 is given respectively as [75]: 

 m 1 t, f 2 5 E 3xStf 45 m 1 f 2 ,  (26)

 C 1 t1, t2, f1, f2 2 5 E 3 1xt1f1 2 mf1
2 1xt2f2 2 mf2

2 4. (27)

The estimated unreliable component values xS tu are 
produced using bounded MAP as in the cluster-based 
case. However for simplicity the procedure may be 
constrained such that only reliable components within 
a certain neighborhood of the given unreliable compo-
nent contribute to the estimation. In work by Raj and 
Stern [72] this neighborhood xStr

1n2 is defined as all reliable 
components in the spectrogram which have normalized 

Figure 22. Missing data recognition via reconstruction of the speech spectrogram. For a corrupted spectrogram and cor-
responding reliability mask, knowledge of the structure of the speech is captured by a classifier which estimates the true 
value of unreliable components based on the reliably declared components.
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covariance of greater than or equal to 0.5 with at least 
one element in xStu.

2) Classifier Compensation
In classifier compensation approaches the classifier it-
self is modified to perform recognition with the parti-
tioned spectral vector. The two most prominent variants 
are class-conditional imputation and marginalization. 

a) Class-Conditional Imputation
Class-conditional imputation involves a reconstruction of 
the unreliable spectral components x

S
u which is specific to 

the distribution of a particular HMM state [77]. For speaker 
recognition a GMM is assumed and so the state output like-
lihood becomes equivalent to the model likelihood p 1 xS|l 2 . 
For a corrupt spectral vector partitioned as xS 5 1xSr , x

S
u 2 , 

the model specific unreliable spectral estimate is obtained 
via MAP using the distribution of model lk: 

 x
Ŝ

u,k 5 argmax
xS

 5p 1 xS| xSr , lk 26. (28)

Classification is performed by producing class specific 
spectrogram estimates Xk 5 1Xr, k, Xu,k 2  allowing a ML de-
cision to be made over all spectral vectors as in (9). 

b) Marginalization 
In marginalization the spectral components of the input 
observation are used directly to perform optimal recog-
nition based on the reliable (r) and unreliable (u) sub-
sets. As demonstrated in Fig. 23, this approach replaces 
the standard Gaussian output likelihood p 1 xS|l 2  with 
the marginal distribution of the reliable components 
p 1 xSr|l 2 , which is conditional on the unreliable compo-
nents. For a given reliability partition xS 5 1xSr , x

S
u 2 , the 

GMM parameters for each speaker model may also be 
separated according to: 

 mS i 5 1mSri
, mSui

2  and Si 5 cSrri
Srui

Suri
Suui

d , (29)

where i is the mixture index. The marginal likelihood 
is obtained by integrating over the distribution of the 
 conditional unreliable components [74], [78], [79]: 

 p 1xSr|l 2 5 a
M

i51
gi N 1xSr ;m

S
ri
, Srri

23xH
S

xL
S
N 1xSv ;m

S
u|ri

, Su|ri
2dx

S
v,  

 (30)

where gi is the weight of the ith mixture and N 1 # 2  is a multi-
variate Gaussian as given by (5). The conditional mean mSu|ri

 
and covariance Su|ri

 parameters are calculated as: 

 mSu|ri
5 mSui

1 S rrui
 Srri

21 1 xSri
2   m S  ri

2 ,  (31)

 Su|ri
5 Suui

2 Srrui  Srri

21 Srui
. (32)

The contribution of the unreliable component distri-
bution to the marginal density is dependent on the 
choice of integration bounds xSL and xSH . In the absence 
of any information about the unreliable components 
the bounds extend to infinity ( 3 xSL, x

S
H 45 32`, ` 4) result-

ing in the bounded integral contribution evaluating to 
1.0, and the marginal density thus becomes dependent 
only on the reliable components. However, in the case 
of log-spectral features it is known that the true feature 
values sSu are constrained by zero and the observed 
values xSu. When the upper and lower limits are set to 
match these constraints ( 3 xSL, x

S
H 45 3 0S , x

S
u 4) bounded 

marginalization is performed [79]. Past research has 
shown that, although more computationally expen-
sive, the use of bounded marginalization produces far 
superior recognition performance to full marginaliza-
tion due to the ability to penalize models based on the 
unreliable components’ known range of values [78]. 
If the covariance structure within the speaker models 
is diagonal, such that Si 5 diag 1s1

2, s2
2, c, sD

2 2 i [ RD, 
then the multivariate reliable and conditional unreli-
able distributions reduce to products over the uni-
variate Gaussian distributions corresponding to each 
component. However, despite the dominance of diago-
nal covariance modeling in speech recognition, recent 
research has shown that for missing data speaker 
identification full covariance modeling significantly 
outperforms diagonal modeling due to the ability to 
capture the relations between the correlated spectral 
components [80]. 

3) Discussion
In comparing marginalization and imputation tech-
niques, marginalization offers the advantage of per-
forming optimal recognition directly based on the 
spectral values and the given reliability information. 
Previous work shows the high recognition rates ob-
tainable using marginalization approaches for both 
speech and [72], [74], [81] and speaker [80] recogni-
tion tasks. When constrained to the log-spectral fea-
ture domain marginalization based recognition is su-
perior to imputation  approaches, particularly at low 
SNRs [82]. However, with marginalization approaches 
the recognizer is limited to utilizing the log-spectral 
feature domain, or other feature domains which lo-
calize the corruption in individual time-frequency 
points. Spectrographic reconstruction approaches 
allow the transformation of the final  estimated clean 
spectral vectors to the cepstral domain, which is 
widely regarded as favorable to recognition. When 
performing this transformation following spectro-
gram reconstruction, the cluster-based imputation 
method was observed to outperform spectral based 
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marginalization. Although this evaluation showed 
class-conditional and covariance based imputation as 
inferior to the cluster-based variant for general robust 
speech recognition, other work suggests these meth-
ods do have uses for specific types of spectrographic 
noise corruption [75], [77]. 

Other factors must also be considered when inter-
preting the results by Raj and colleagues [82], such 
as the use of a smaller dimensional log-spectral vec-
tor for marginalization in comparison to the cepstral 
vectors produced post-reconstruction. In addition, the 

use of diagonal covariance models distinctly biases 
the results towards the imputation methods, since the 
extracted cepstral features are largely uncorrelated 
while spectral features show significant correlation. 
Marginalization based systems should thus dramati-
cally benefit from the use of full covariance models. 
The computational requirements for performing recog-
nition with either approach should also be considered. 
Marginalization is disadvantaged here due to the need 
to calculate a computationally expensive multivari-
ate integral, although recent research has introduced 

Figure 23. Missing data recognition via marginalization. For each spectral vector the reliable component distribution and 
conditional unreliable component distribution are utilized to produce a marginal likelihood score.

30

25

20

15

10

5

50 100150 200 250
Frame

M
el

-F
re

qu
en

cy
 C

ha
nn

el

Noisy Spectrogram
30

25

20

15

10

5

50 100150 200 250
Frame

M
el

-F
re

qu
en

cy
 C

ha
nn

el

Reliability Mask

Accumulate Over All xt

p (x |λ1) p (x |λ2) p (x |λN)

Maximal
Likelihood
Decision

Model λj
Chosen

Speaker GMMs

λ1 λ2 λN
. . .

. . .

S

Feature Vector
Partitioning

Example:
S

S

S

S
x = [x1,x2,x3,x4]

xr = [x1,x3,x4]

xu = [x2]

m = [1, 0, 1, 1]

Model Parameter Partitioning (λ1)

1) Mean Seperation:

2) Covariance Seperation:

S S S
μi = (μri

, μui
)

Σi =
Σrri

Σuri

Σrui

Σuui

• Must Partition for Each Mixture i

Likelihood Calculation (λ1)

1) Set Integration Bounds:

2) Evaluate the Marginal Density:

S S S
• Bounded Marginalization: [xL, xH,] = [0, xu]

p (x r |λ1) = ∑ gi
SS S

N(xr ; μri
, Σrri

)
S

S

S S
N(xv ; μri

, Σrri
) dxv2

xH

S
xL

M

i = 1

Repeat Partitioning and Likelihood
Calculation for Each Model.

GMM Recognition with Marginalization

Mask and
Spectral
Vector
Input

S

S S
m

(xr,xu)
Spectral Vector x S

Mask Vector m

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on April 17,2021 at 17:16:19 UTC from IEEE Xplore.  Restrictions apply. 



 50  IEEE CIRCUITS AND SYSTEMS MAGAZINE   SECOND QUARTER 2011 

techniques such as sub-band processing to reduce this 
overhead [83]. 

C. Mask Estimation for Speaker Identifi cation
Despite the fundamental differences between the 
recognition paradigms, the robustness provided by 
any missing data compensation strategy is critically 
dependent on the accuracy of the time-frequency 
reliability decisions. In the case of complete a priori 
noise knowledge the true SNR is known for each time-
frequency point allowing oracle masks to be con-
structed (see (22)). When these ideal reliability masks 
are available missing data recognition produces high 
robustness even under extreme noise distortion [81]. 
In practice the absence of a priori noise knowledge 
forces an estimation of the reliability decisions, where 
past research has largely concentrated on developing 
techniques which accurately reproduce the oracle 
mask. Traditional methods for missing data mask es-
timation utilize the properties of the speech signal to 
calculate the reliability decisions, and these bottom-up 
approaches can be categorized as SNR-based estima-
tion techniques, auditory and perceptual estimation 
techniques, and classification-based techniques. Ex-
amples for each of the distinct estimation approaches 
are discussed below, with specific emphasis on their 
applications for robust speaker recognition. 

1) SNR-Based Estimation
In SNR-based techniques the time-frequency reliabil-
ity decisions are calculated by a direct estimation of 
the power spectrum of the corrupting noise signal. 
The spectral subtraction method [84] can be utilized 
to achieve this, where an estimate of the average noise 
power spectrum is obtained by assuming silence (no 
speech energy) within the first several frames of the 
utterance. For a received noise corrupted power spec-
trum Xp 1 t, f 2  the estimated clean speech power spectrum is 
produced by: 

ŜP 1 t, f 2 5

eXp 1 t, f 2 2 N̂p 1 t, f 2 if Xp 1 t, f 2 2 N̂p 1 t, f 2 . gXp 1 t, f 2 , 
 gXp 1 t, f 2 otherwise,

 (33)

where N̂p 1 t, f 2  is the estimated noise power spec-
trum calculated over the first Tavg frames as 
N̂p 1 t, f 2 5 1/Tavg gTavg

T51  Xp 1t, f 2 , and g is a small spectral 
flooring factor (g < 0) ensuring non-negativity for com-
ponents in the estimated clean power spectrum [84]. An 
SNR criterion for binary reliability decisions based on 
this spectral subtraction is given by 

 mtf
ss1u2 5  •

1 if 10log10 a Ŝp 1 t, f 2
N̂p 1 t, f 2 b . u, 

0 otherwise, 
  (34)

where u is the subtraction energy threshold in dB (see 
Fig. 24). A 0 dB criterion (u 5 0 dB) implies that time-
frequency points are reliable if the estimated clean 
speech energy exceeds the estimated noise energy: 
S^ P 1 t, f 2 /NP

^ 1 t, f 2 . A negative energy criterion approach 
was proposed by Drygajlo and El-Maliki [85], where a 
component was labeled as reliable if the received sig-
nal power spectral value exceeded the estimated noise 
power spectral value: 

 mtf
2Energy 5 e1 if |Xp 1 t, f 2| . |N̂p 1 t, f 2|, 

0 otherwise, 
 (35)

where the noise estimate N̂p 1 t, f 2  is produced using a 
voice activity detector (VAD). By combining spectral 
subtraction type enhancement (as in (34)) with nega-
tive energy criterion based missing data, a significant 
EER reduction is obtained for speaker verification in 
the presence of stationary additive noises [85]. This 
approach has been extended through the use of soft 
spectral subtraction for the speech enhancement and 
reliability masking stages [86]. Here subtraction of 
the noise estimate from the squared DFT magnitudes, 
performed prior to their input into the Mel-filterbank, 
decreases the error in each feature component. The re-
sulting masks give an EER improvement compared to 
hard spectral subtraction when applied to the speaker 
verification task. 

For use as a pure missing feature estimator, previous 
work on missing data speech recognition reports that 
the 0 dB criterion is superior to the negative energy crite-
rion [74], [87]. By increasing the criterion threshold the 
noise energy may be overestimated allowing noisy points 
which would otherwise be included to be removed, at 
the expense of also removing speech dominated regions. 
The SNR-based estimation methods which utilize classi-
cal spectral subtraction via the 0 dB SNR reliability crite-
rion are limited by their first order (mean only) represen-
tation of the noise. To account for variations in the noise 
magnitude a statistical detector was proposed which 
models the distribution of the noise in each frequency 
band [88]. This method produced improved verification 
performance compared to the standard 0 dB criterion. 

The drawback of spectral subtraction based SNR 
mask estimation is its lack of robustness to non-sta-
tionary and transient noises. For these types of dis-
turbances using the generalized noise estimate within 
a small number of frames to produce the entire noise 
spectrogram often results in inaccurate estimation. In 
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addition to spectral subtraction based approaches, 
other methods have been proposed to estimate the lo-
cal SNR including the Vector Taylor Series method [75], 
and various spectral estimation techniques such as en-
ergy clustering, weighted averaging, envelope tracking 
and Hirsh histograms [89]. Although offering marginally 
improved performance compared to standard spectral 
subtraction estimation, their performance remains poor 
in non-stationary environments. 

2) Auditory and Perceptual Estimation
In these types of mask estimation techniques reliabil-
ity decisions for components of the received spectro-
gram are based on perceptually motivated criteria and 
the properties of the human auditory system. Compu-
tational auditory scene analysis (CASA) aims to model 
the human auditory ability to identify, segregate and 
process sounds from different sources, and is thus 
naturally suited to the problem of separating target 
speech signals from other noise sources [90], [91]. For 
missing data applications CASA approaches may be 
utilized to identify time-frequency regions which are 
dominated by a single source (the target speaker), and 
hence calculate reliability decisions without explicit 
local SNR estimation. A harmonicity grouping strat-
egy was proposed by Barker et al. [92] based on the 

knowledge that energy within voiced speech is orga-
nized around harmonics of the fundamental frequen-
cy. In this approach harmonic groups are identified 
within voiced speech frames, and a decision process 
is consulted to determine whether the group belongs 
to the speech or noise source. A simplistic decision 
process which labels all identified groups as reliable 
is implemented and, when used in conjunction with a 
standard local SNR estimator, speech recognition per-
formance which exceeds the multicondition baseline 
can be obtained. The disadvantage of the approach 
is the difficulty in identifying the source of the indi-
vidual harmonicity groups in the case of distortions 
which have speech like properties. 

Recently CASA approaches based on pitch informa-
tion have been utilized to perform robust speaker identi-
fication [93]. Reliability decisions are achieved via mon-
aural voiced speech segregation obtained from accurate 
pitch contour tracking [94]. For typically troublesome 
unresolved harmonics, the technique generates seg-
ments based on amplitude modulation (AM) in addition 
to temporal continuity and groups them according to 
AM rates. The voiced speech segregation technique was 
evaluated on a small 38 speaker set from the TIMIT data-
base using marginalization to modify the diagonal cova-
riance based GMM recognizer. Estimation of the voiced 

Figure 24. Spectral subtraction estimation of the reliability mask given the noisy speech spectrogram in white noise at 5 dB.
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speech segregation mask was found to considerably 
outperform estimation via spectral subtraction when 
tested in non-stationary cocktail party and rock music 
noises. However, the performance gap between the ora-
cle and voiced speech segregation masks remains large, 
particularly at low SNRs. 

Motivated by the importance of voiced speech re-
gions for speaker discrimination [95], other CASA mask 
estimation methods have also focused on extracting 
voicing information from the corrupted speech signal. 
To identify the voicing character of speech spectra 
without explicit pitch estimation Jaňcovi č and Köküer 
propose a measure based on the distance between 
the shape of the short-term signal and frame analysis 
window derived spectra [96]. The calculation of this 
voicing distance (VD) is summarized as follows: Firstly 
the magnitude spectra is produced via the Short-Time 
Fourier Transform (STFT) including zero-padding to 
ensure spectra smoothness. The voicing distance at 
DFT channel k is given by the Euclidean distance be-
tween magnitude spectra 

VD 1k 2 5 c 1
2Mc 1 1

 a
Mc

t52Mc

1|SSTFT 1k 1 t 2|2|W 1t 2|22 d
1
2

, 

 (36)

where Mc is the number of components in the speech 
spectra around k, and SSTFT 1k 2  and W 1m 2  are values of 
the normalized STFT and windowed spectra respec-
tively [96]. The VD for each filterbank channel f  is pro-
duced by summing the individual distances from DFT 
channels which contribute to the filterbank output: 

  VDFB 1 f 2 5
1

XFB 1 f 2 a
kf1Kf21

k5kf

VD 1k 2 # Gf 1k 2 # |SSTFT 1k 2|2,  (37)

where Gf 1k 2  is the frequency response of filterbank f, kf  
and Kf  are the lowest component and total number of 
components of Gf 1k 2  respectively, and XFB 1 f 2  is the spec-
tral output value of the filterbank. Finally the voicing 
distances are post- processed to help eliminate outliers. 
Experimental evaluation showed that the VD measure 
is related to the local SNR of a voiced filterbank chan-
nel, and this motivates the construction of a voicing 
mask which assigns time-frequency reliability decisions 
 according to: 

 Mvoiced 1 t, f 2 5 e1 if VDt
FB 1 f 2 , b, 

0 otherwise, 
 (38)

where b is an empirically determined threshold [97]. 
Jančovič and Köküer combine the estimated voicing de-
cisions with a standard SNR mask where reliability deci-
sions are formed via the SNR criterion using a stationary 
noise estimate. The combined masking approach was 
evaluated for marginalization based speaker identifica-

tion on additive noise corrupted TIMIT data. The results 
confirmed a performance improvement for the combined 
strategy compared to the use of noise masking alone, 
particularly for the non-stationary noise case [97]. 

mBayes
t f  5

e1 if p 1lm51
Bayes

 1 f 22p 1   §tf  
S

|lm51
Bayes 1 f 22.p 1lm50

Bayes 1 f 22p 1  §tf
S

|lm50
Bayes 1f 22 ,

0 otherwise,
 (39)

CASA approaches to missing data mask estimation 
have also been developed to handle convolutional dis-
turbances. Palomäki et al. proposed a modulation filter-
ing scheme to produce reliability decisions for spectral 
features under reverberative distortion effects [98]. 
This method exploits the ability of modulation filtering 
to emphasize the strong speech regions (i.e the onsets) 
and remove regions contaminated by distortions. In an 
evaluation for robust speech recognition the modula-
tion masking based missing data system showed large 
improvements over the uncompensated MFCC baseline. 
However, for low direct-to-reverberative ratios and large 
reverberation (T60) times there is significant perfor-
mance difference between utilizing the practical mask 
estimator and masks based on a priori knowledge. In fur-
ther work for estimating reliability decisions in the pres-
ence of reverberation, Palomäki et al. have  developed 
a binaural auditory model which uses spatial locality 
queues to identify time-frequency regions in the audi-
tory scene that originate from a common azimuth [99]. 
When the resulting reliability masks are passed to a 
marginalization based missing data recognizer, this bin-
aural model is shown to improve significantly over the 
MFCC baseline for reverberation times of up to T60 5 2.7s 
and for spatial separations of 20° or larger. 

3) Classifier-Based Estimation
In contrast to SNR-based and perceptual estimation tech-
niques which formulate reliability decisions by directly 
utilizing properties of the speech signal, classifier based 
methods use supervised model training and a subse-
quent classification process to determine the labeling. 
In the Bayesian approach this classification is achieved 
via the modeling of distributions of a set of reliability 
features extracted from the noise distorted speech sig-
nal. If the features are designed such that they exploit 
the characteristics of the speech signal itself (rather 
than those of the corrupting noise), then probabilistic 
evaluation of the feature values will indicate whether the 
associated time-frequency point is reliable. Consider a 
spectral component xtf, and a set of corresponding re-
liability features §tf

S
 . Under the Bayesian approach the 

binary reliability decision for xtf  is given by (39), where 
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lm51
Bayes 1 f 2  and lm50

Bayes 1 f 2  are the trained distributions for a 
reliable and unreliable decision respectively in frequen-
cy channel f, and p 1 §tf

S
 |lm51

Bayes 1 f 22  and p 1 §tf
S

 |lm50
Bayes 1 f 22  are the 

corresponding probability densities of reliability and un-
reliability for channel f  based on the reliability feature 
vector §tf

S
 .

Using this framework Gaussian mixture classification 
was performed by Raj using band spectral energy and its 
derivatives as features [75]. Seltzer et al. further develop 
this idea by computing features designed to estimate re-
liability based on the characteristics of the speech sig-
nal [100]. These included: the comb filter ratio to com-
pare energy in voiced regions to energy in non-harmonic 
regions, the autocorrelation peak ratio to measure signal 

periodicity, the sub-band to full-band energy ratio repre-
senting spectral shape, sub-band energy to noise floor 
ratio to estimate the noise floor energy, kurtosis used to 
measure signal Gaussianity, and  spectral valley flatness 
to measure SNR. Using oracle masks, separate classifi-
ers were trained for unvoiced and voiced speech types 
within each channel since the lack of harmonicity in 
unvoiced regions prevents the use of the pitch based 
features (see Fig. 25). In evaluations for robust speech 
recognition classifier estimation outperforms traditional 
spectral subtraction estimators in all noise conditions, 
but particularly for the non-stationary cases [100], [101]. 

An extension to this work proposes the incorpora-
tion of spectral variation across time and frequency 

Figure 25. Classifier-based reliability mask estimation using the Bayesian approach proposed by Seltzer et al. Oracle mask 
training is used to construct statistical models for a set of reliability features in both unreliable and reliable speech regions. 
For a test speech utterance, a mask estimate is constructed by extracting the reliability features and performing classifica-
tion on the trained distributions for reliable and unreliable decisions.
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to improve upon simple white noise classifier training 
[102]. Since white noise only approximates the cor-
ruption induced by other noises if mask component 
estimates across sub-bands are independent, colored 
noise training is instead used by Kim et al. to give im-
proved performance in non-stationary cases. In sub-
sequent work, Kim and Stern attempt to alleviate the 
problem of data insufficiency for the frequency bands 
by the independent processing of each band, and also 
propose a more accurate voiced/unvoiced decision 
process [103]. 

Relevance vector machine (RVM) classification has 
been recently proposed to construct the reliability mask 
decisions through the direct modeling of the STFT coef-
ficients [104]. Compared to the use of an SVM classifier, 
the RVM approach produces masks of similar accuracy 
with the advantage of a reduced computational com-
plexity. Weiss and Ellis also compared the performance 
of the produced RVM masks to CASA pitch [105] based 
masking for speech recognition using reconstruction. 
They report that the RVM produces superior recogni-
tion rates due to its tendency to favor deletion errors 
over inclusion errors (Section IV-D further discusses 
mask error types). 

4) Discussion
It is observed from past evaluations that both auditory 
and classifier-based techniques can produce superior 
recognition performance to simplistic SNR-based meth-
ods. The advantage of CASA type approaches to mask 
estimation is their ability to construct decisions based 
on the properties of the speech signal’s spectra. This 
allows a more accurate identification of speech domi-
nant spectrographic regions compared to SNR-based 
approaches which assume a generalization of noise 
characteristics observed in a small number of speech 
free frames. This ensures that CASA techniques will be 
preferable to SNR methods such as spectral subtraction 
in difficult environments. 

In comparing classifier mask estimation methods to the 
SNR and perceptual techniques several comments can be 
made. Since classifier estimation attempts to model the 
properties of the speech, the quality of the reliability deci-
sions produced do not depend on obtaining an accurate 
noise estimate. Similarly to CASA methods, classifier es-
timation are thus effective for compensating against sta-
tionary and non-stationary noises, where previous studies 
have shown that Bayesian approaches in particular can 
provide far higher recognition rates in music type distur-
bances compared to traditional SNR estimation [100]. 

A comparison between classifier techniques and 
the various CASA and perceptual approaches is dif-
ficult due to the diversity in the applications of the 

 proposed algorithms, and the lack of a clear evalu-
ation procedure within missing data based speech 
processing research [106]. However, with generality 
it can be stated that a disadvantage of the classifier 
based approach is its weakness to noises which share 
similar spectral characteristics to those of the speech 
signal. In this case the reliability features would be un-
able to distinguish speech and noise dominant time 
frequency components causing poor reliability mask 
accuracy. CASA approaches may be able to utilize oth-
er information such as spatial locality in order to as-
sist in the reliability labeling, and should thus be more 
effective for speech shaped noise compensation or co-
channel identification tasks. 

D. Mask Errors and Model-Based Processing
The weakness of traditional approaches to missing data 
is their reliance on an accurate estimation of the reliabil-
ity mask. In practice mask estimation methods which uti-
lize the properties of the speech or noise signals (termed 
bottom-up methods) often contain errors. In the case of 
binary masking there are two distinct types of error: 
the inclusion of truly unreliable time-frequency points 
(‘inclusion’ errors), and the deletion of truly  reliable 
time-frequency points (‘deletion’ errors). For standard 
‘bottom-up only’ missing data the recognizer has no pro-
tection against these errors, particularly in the case of 
inclusion corruption which typically reduces the (log-)
likelihood score of the true model. As a result recogni-
tion rates obtained from practically estimated masks are 
significantly lower than those obtained using ideal masks 
(compare the oracle and estimated masks in Fig. 26). 

Recent research has attempted to increase the accu-
racy of the reliability decisions by utilizing information 
within the trained acoustic models. The active percep-
tion approach is an example of such a top-down robust-
ness strategy. Based on the dominance of high intensity 
spectral components in human hearing, this method 
provides robustness for speech recognition using the 
feature energy of the trained clean models [107]. The 
approach exploits the observation that, for an additive 
environmental disturbance of a given energy, in the 
log-spectral domain time-frequency regions with high 
speech energy are less affected compared to regions 
of low speech energy. Consequently, for speech recog-
nition, feature components with high model energy are 
assumed to correspond to a specific speech sound and 
are retained, while components with low model energy 
are assumed to be non-robust and are ignored. Utilizing 
missing data theory the observation is then divided into 
components ‘mandatory’ for recognition xSR, and non-
robust components xSN, giving the posterior probability 
of state qj as 
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 P 1qj|x
S 2 5

p 1xSR 1qj 2|qj 2p 1qj 2
p 1xSR1qj2 2

,  (40)

where the partitioning of mandatory and non-robust 
features (the reliability partitioning) is state depen-
dent. Cranen and de Veth evaluate this method on 
connected digit robust speech recognition, where 
the state dependent reliable subset is determined by 
choosing thresholds for which a fixed proportion of 
values observed in training fell below [107]. Although 
performance improved significantly in clean speech, in 
mismatched noise the performance benefit is substan-
tially less. The major drawbacks of this approach are 
its assumption of high energy component reliability 
and the need to tune thresholds to form the state de-
pendent reliable subset. In non-stationary mismatched 
conditions this means the reliable subset chosen may 
have a large number of errors compared to the ideal 
bottom-up decisions. 

For speaker recognition, universal compensation 
[108] is a model based robustness technique which com-
bines missing data theory and multicondition training 
to compensate against arbitrary noise types. The first 
step in the method is the construction of multicondi-
tion models for each speaker using clean training data 
and noisy training data obtained by corrupting the clean 
data with wide band flat spectrum noise at a range of 
SNRs. For an arbitrary unknown test utterance spectrum 
which experiences full-band corruption with respect to 
the clean model spectrum, only partial-band corruption 
may be experienced with respect to the multicondition 
model spectra. This full-band to partial-band conver-
sion is achieved by performing a search over the feature 
space of each multicondition model to find components 
which best match the corresponding components in the 
test spectrum [108] (see Fig. 27). Using only the matched 
components a score is produced for each multicondition 
model, whose scores are then combined to give an over-
all recognition score. 

Producing the matched feature subset for each 
speaker model is achieved using probabilistic union 
modeling [109], [110]. For a given test spectral vector 
x
S

5 1x1, x2, c, xD 2 , let a matched component subset to 
speaker model l at SNR level l [ 31, 2, c, L 4 be x S 1l, l2. 
The probability of test observation x

S
 given model l is 

 p 1 xS|l 2 5 a  
L

l51
p 1 l|l 2p 1 xS 1l, l2|l, l 2 ,  (41)

where p 1 l|l 2  is the SNR level l prior for model l and 
p 1 xS 1l, l2|l, l 2  is the likelihood of the matched subset on 
the multicondition model 1l, l 2 . This is a form of missing 
data since only the components of the matched subset 
xS 1l, l2 [ xS  are used to evaluate the likelihood for each 

model spectrum, where it is assumed that xS 1l, l2 can be 
defined as the subset xS sub which maximizes p 1 xS sub|l, l 2 . 
Normalization is needed to compensate for different 
matched subset sizes and so the conditional probability 
must be replaced with the posterior defined as: 

Figure 26. Binary time-frequency mask errors: a compari-
son between the oracle reliability mask (b) and a spectral 
subtraction (SS) estimated mask (c) for a TiDigits utterance 
corrupted with 10 dB white noise. Regions of inclusion and 
deletion error can be clearly observed within the SS mask, 
where a threshold of u 5 0 dB is used to produce the esti-
mate. (a) corrupted speach spectrogram; (b) oracle reliabil-
ity mask; (c) spectral subtraction mask estimation.
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 p 1l, l|xSsub 2 5
p 1xSsub|l, l 2p 1l, l 2

alr, lr          p 1xSsub|l r, l r 2p 1l r, l r 2 . (42)

It can be shown that the probability of the test observa-
tion given the speaker model p 1 xS|l 2  is proportional to 
the optimized posterior p 1l, l|xSsub 2  over all SNR levels 
l. Since p 1l, l|xSsub 2  favors large subset sizes, by finding 
the largest matched subset xSsub for each model 1l, l 2 , the 
probability of p 1 xS|l 2  is also optimized [108]. Universal 
compensation has been extensively evaluated in the 
context of speaker identification [108], [111], and the 
results show that the method approximates multicondi-
tion model performance in known noise conditions, and 
surpasses the multicondition model in unknown condi-
tions. Despite its ability to provide high robustness, the 
disadvantage of the approach is the required exhaustive 
search over the feature space of both the clean and mul-
ticondition models for each speaker. 

E. Combining Information Sources
Although the use of purely top-down approaches pro-
vides an alternative to traditional bottom-up meth-
ods (which are vulnerable to estimation errors), con-
structing accurate reliability decisions using model 
information alone is typically computationally inten-
sive, especially for high feature dimensionality. A so-
lution is to combine bottom-up and top-down sources 

of  information, with the goal of utilizing knowledge 
from the trained models to prevent recognizer expo-
sure to errors within the bottom-up mask estimates. 
Two combined bottom-up top-down approaches have 
demonstrated success for missing data speech recog-
nition: the mask model based approach, and the mul-
tisource decoder. 

1) Mask Modeling for Missing Data 
Speech Recognition

The most intuitive and efficient way to perform top-
down processing of estimated reliability masks is to di-
rectly utilize the parameters of the trained models. For 
speech recognition a mask modeling approach has been 
proposed, where a mask model is estimated for each 
HMM state and mixture in order to predict the expected 
reliability decisions in a given noise condition [112]. The 
method introduces a mask probability term P 1M|Q, W 2  
to express the likelihood of a given mask M, correspond-
ing to observation spectrogram X, given state sequence 
Q, and hypothesized word sequence W. By expressing 
the estimated word sequence as 

Ŵ 5  argmax
W

 P 1X|M, Q,W 2P 1M|Q,W 2P 1Q|W 2P 1W 2 ,  (43)

where P 1Q|W 2  and P 1W 2  are the state transition and lan-
guage model priors respectively, the ML decision is made 
by combining the observation likelihood P 1X|M, Q, W 2  

Figure 27. Universal Compensation: spectral feature component matching is performed on multicondition models of each 
speaker to produce an optimal reduced feature set which maximizes recognition for the given model.
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with the mask probability P 1M|Q, W 2 . The observation 
likelihood is computed via marginalization using the es-
timated bottom-up SNR reliability mask, while the mask 
probability is obtained by training mask models using 
oracle masks in multiple noise conditions. For mask 
vector mS t, P 1mS t|q, l 2  is estimated for HMM state q and 
mixture l by firstly calculating the posterior probability 
P 1 l|x

S
t, q 2  from the speech HMM parameters as in [112]. 

The mask model parameter for feature channel f  in state 
q and mixture l is given by 

 m f, l,q 5
g t : xt

S
[q

 P 1 l| xt
S,q 2 # mtf

g t : x
S

t [q
 P 1 l|xSt,q 2 , (44)

and the mask probability is the product of the individual 
feature parameter values within the model: 

 P 1mS t|l, q 2 5 q
D

f51
mf, l, q

mtf 11 2 mf, l, q 212mtf. (45)

Essentially the mask probability term uses top-down 
knowledge to provide protection against errors in the 
bottom-up mask which may otherwise produce a high 
observation likelihood on an incorrect word sequence. 
Experimental evaluations for connected digit recogni-
tion have shown that the use of mask probabilities 
provides reasonable improvements over standard 
 bottom-up only missing data for a variety of noise 
 conditions [113]. 

2) Multisource Decoding
While the mask modeling approach separates the top-
down and bottom-up decision processes by utilizing 
‘static’ information from the trained HMMs, multi-
source decoding [114] is a combined strategy which 
integrates the reliability mask estimation and missing 
data recognition stages. Specifically, the multisource 
decoder combines CASA principles and top-down use 
of the recognizer likelihoods in order to find accurate 
reliability labels in non-stationary noise conditions. 
Bottom-up processes are firstly employed to identify 
spectro-temporal regions which are likely to belong to 
the same source. Efficiency is ensured by dividing the 
time-frequency representation into fragments, each of 
which represents a region dominated by single source 
as determined by the bottom-up stage. For represen-
tations consisting of N  fragments, a top-down search 
is performed to find the most likely speech model se-
quence for each of the possible 2N labels. By perform-
ing a simultaneous search over the fragment labeling 
space using bottom-up processes and the word string 
space using the recognizer likelihoods, the multi-
source decoder outperforms standard bottom-up only 
missing data for speech recognition in non-stationary 
environments [114]. 

3) Discussion
Although developed for robust speech recognition, the 
mask modeling and multisource decoding techniques il-
lustrate the potential of combining bottom-up and top-
down sources of information to enhance the robustness 
of missing data systems while maintaining computa-
tional efficiency. These two methods considered exhibit 
two distinct combination strategies: the combination of 
the independently produced bottom-up estimates and 
static model parameter based top-down decisions with-
in the classification scores, and the integration of the 
reliability labeling and missing data recognition stages 
via a top-down search which operates on a collection 
of time-frequency fragments proposed by a bottom-up 
stage. The advantage of the mask modeling approach is 
computational efficiency. By training mask models for 
each frequency channel using multicondition oracle re-
liability decisions, fast correction of errors within the 
bottom-up mask can be achieved. This is primarily due 
to the ability to perform all significant computation as-
sociated with the top-down processing offline during 
or following model training. The top-down search per-
formed by the multisource decoder results in a poten-
tially prohibitive amount of computation depending on 
the choice of fragment size. However, this may be re-
duced by through the use of dynamic programming to 
combine equivalent hypotheses at the conclusion pro-
cessing for each fragment [115]. The search complexity 
thus becomes a function of the maximum number of si-
multaneous fragments, which remains constant over ut-
terance length unlike the fragment count. It is expected 
that the multisource decoder is capable of producing 
more accurate results compared to approaches such as 
mask modeling, since the former uses top-down infor-
mation specific to the utterance being processed while 
the latter relies on generic top-down information from 
a training or validation set. An additional advantage of 
the multisource approach is its conceptual extendibility 
to search across multiple simultaneous models, and this 
may permit the recognition of both voices in simultane-
ous speech [114]. 

Despite the robustness shown by both the mask 
modeling and multisource decoding methods for 
their intended speech recognition applications, the 
direct adaptation of these approaches for missing 
data speaker recognition is problematic. In its current 
form the mask modeling approach is not applicable to 
speaker recognition since the trained models capture 
only speaker discriminative information, as opposed 
to the speech information. The absence of temporal 
evolution in the information captured by the speaker 
GMMs would also have the effect of constraining any 
robustness information available from the models to 
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the spectral frequency domain. The absence of speech 
modeling also prevents the use of multisource decod-
ing as a combined estimation and recognition strat-
egy for speaker recognition, since the word sequence 
search to verify the bottom-up labeling cannot be per-
formed. Designing a combined bottom-up top-down 
approach for missing data speaker recognition essen-
tially requires the discriminative information within 
the speaker models to be related to the quality or ‘cor-
rectness’ of the speech reliability decisions. The lack 
of research focused on developing combined missing 
data approaches for speaker recognition is a result of 
the difficulty in achieving this requirement, and also 
perhaps of the lesser emphasis which speaker recog-
nition specific applications have traditionally received 
in missing data research activities. However, based 
on the success of combined approaches for missing 
data speech recognition, the implementation of similar 
methods for speaker recognition should provide a sig-
nificant improvement in robustness compared to exist-
ing bottom-up missing data techniques. 

VIII. Summary

In the first part of this article a tutorial on closed-set, 
text-independent, speaker identification systems was 
presented. Speaker identification is basically a pattern 
recognition problem with the added complexity of deal-
ing with time-series, non-stationary data. As a conse-
quence vectors of features need to be derived from the 
acoustic data, with the MFCC concatenated with delta 
and acceleration temporal derivatives and subject to 
cepstral mean normalization (CMN) being the most 
popular. For identification of speakers, individual mod-
els of speakers need to be defined based on the feature 
vectors from utterances of that speaker. In speaker rec-
ognition the GMM has enjoyed wide success, especially 
when augmented by adaptation strategies such as in the 
GMM-UBM approach. With a GMM standard Maximum-
Likelihood (ML) scoring can be used to identify the 
speaker of an unknown utterance. However the recent 
interest in discriminative based Support Vector Ma-
chines (SVM) approaches relying on optimal separation 
of classes has yielded successful identification systems 
especially in cases of data sparsity (limited amount of 
data). To date GMM and SVM based systems, their de-
rivatives and hybrids represent the state of the art in 
speaker recognition technologies. 

This part of the tutorial concluded with experimen-
tal evaluations in mismatched, limited training data 
and additive noise environments. In clean conditions 
high recognition rates, in excess of 95% on 64 speakers, 
were achieved. The GMM-UBM and GMM-SVM systems 
were found to be especially robust when confronted 

with limited training data highlighting the importance 
of utilizing some form of background model (the UBM). 
With mismatched channels the importance of CMN was 
underscored by an 18% reduction in performance when 
CMN was not adopted. Although mismatched condi-
tions can be handled by some form of normalization 
(e.g. CMN) the performance in the presence of additive 
noise produced significant degradation in recognition, 
dropping by as much as 20% even when only relatively 
mild noise (30 dB SNR for the white noise case) impact-
ed on the environment. Evidently robustness, especially 
against additive noise, is an important issue for speaker 
recognition systems. 

In the latter part of this article we have provided a 
review of robustness techniques for speaker recogni-
tion. An overview of previously proposed methods for 
noise compensation in speech processing was firstly 
presented. These techniques are primarily suited to 
compensating against channel effects, and rely on as-
sumptions such as stationarity or knowledge of the 
noise characteristics in order to effectively compensate 
against environmental disturbances. To perform speak-
er recognition in commercial applications improved 
robustness against environmental distortions, and in 
particular against non-stationary and transient effects, 
is required. Missing data recognition is naturally suited 
to this problem due to its ability to compensate for ar-
bitrary unknown environmental effects within speech 
signals. These approaches are critically dependent on 
the accuracy with which individual time-frequency re-
gions within a speech signal can be identified as speech 
or noise dominant. In practical situations the absence 
of a priori noise knowledge requires an estimation of 
these reliability decisions in the form of a reliability 
mask. Past approaches to reliability mask estimation 
for speaker recognition were then reviewed including 
SNR-based methods, auditory and perceptual criteria 
and classification-based techniques. While SNR-based 
methods offer simplicity by attempting a direct esti-
mation of the noise spectra from speech free regions, 
their performance is generally inferior to auditory and 
classifier techniques, which identify regions of speech 
dominance by utilizing perceptual cues (such as locality 
or pitch information) and specifically designed features 
respectively. 

Regardless of the technique used to estimate the reli-
ability decisions, in difficult noise conditions these bot-
tom-up estimation methods will produce reliability mask 
errors which adversely affect recognition performance. 
Top-down approaches are thus examined as a solution 
to address the vulnerability of traditional missing data 
systems to mask errors. Firstly, pure top-down meth-
ods are reviewed which utilize model information to 
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construct the reliability mask. Finally, motivated by the 
need for a more efficient recognition process than top-
down estimation alone may provide, recent missing data 
approaches which combine bottom-up and top-down 
sources of information are reviewed. Following a discus-
sion of these combined methods and their significance 
in the context of speaker recognition, we conclude that 
combining information sources provides the next logical 
step in improving the robustness of GMM based missing 
data speaker recognition systems. 
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